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Preface

This is a Ph.D. thesis submitted to Graduate School of Mathematical Sci-
ences, the University of Tokyo.

Throughout this thesis, we work over the field of complex numbers C. We
adopt the standard notations and definitions in [KaMaMa87] and [KoMo98],
and will freely use them.

The aim of birational geometry is to classify all varieties up to birational
equivalence. According to Minimal Model Program, minimal varieties and
Fano varieties with mild singularities form fundamental classes in birational
geometry. To understand these special classes of varieties, it is very natural
and interesting to prove some boundedness results. The goal of this thesis is
to collect my recent works in birational geometry centered around the theme
of boundedness.

Chapter 1 contains a brief summary of the motivations, main problems,
histories, and main results on boundedness of volumes and birationality.

Chapter 2 provides basic knowledge on volumes, Hirzebruch surfaces, non-
klt centers, connectedness lemma, rational map defined by a Weil divisor,
Reid’s Riemann–Roch formula, and so on. Basic lemmas are also provided
to support the following chapters.

Chapter 3 focuses on the boundedness of anti-canonical volumes. We
prove Weak Borisov–Alexeev–Borisov Conjecture in dimension three which
states that the anti-canonical volume of an ε-klt log Fano pair of dimension
three is bounded from above. As a corollary, we give a different proof of
boundedness of log Fano threefolds of fixed index.

Chapters 4 and 5 are devoted to the boundedness of birationality.
In Chapter 4, we investigate the pluri-anti-canonical linear systems of

weak Q-Fano 3-folds. We prove that, for a Q-Fano 3-fold X, | −mKX | gives
a birational map for m ≥ 39, and for a weak Q-Fano 3-fold X, | − mKX |
gives a birational map for m ≥ 97. We also consider the generic finiteness
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and prove that for a Q-Fano 3-fold X, |−mKX | gives a generically finite map
for m ≥ 28. Plenty of examples are provided for discussing the optimality of
these results.

In Chapter 5, we investigate minimal 3-fold X with numerically trivial
canonical divisor and a nef and big Weil divisor L on X. We prove that |mL|
and |KX +mL| give birational maps for m ≥ 17.

Chapters 3 and 5 are based on my preprints [Jiang14b, Jiang14a]. Chap-
ter 4 is based on a joint work with Meng Chen [CJ14].
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1
Introduction

The aim of birational geometry is to classify all varieties up to birational
equivalence. According to Minimal Model Program, minimal varieties and
Fano varieties with mild singularities form fundamental classes in birational
geometry. To understand these special classes of varieties, it is very natural
and interesting to prove some boundedness results. In particular, we are
interested in the boundedness of anti-log-canonical volumes of singular log
Fano varieties and that of birationality of minimal 3-folds and Q-Fano 3-folds.

1.1 Boundedness of anti-canonical volumes

Definition 1.1.1. A pair (X,∆) consists of a normal projective variety X
and an effective Q-divisor ∆ on X such that KX + ∆ is Q-Cartier. (X,∆)
is called a log Fano pair (resp. weak log Fano pair) if −(KX + ∆) is ample
(resp. nef and big). If dimX = 2, we will use del Pezzo instead of Fano.

Definition 1.1.2. Let (X,∆) be a pair. Let f : Y → X be a log resolution
of (X,∆), write

KY = f ∗(KX + ∆) +
∑

aiFi,

where Fi is a prime divisor. The coefficient ai is called the discrepancy of Fi
with respect to (X,∆), and denoted by aFi

(X,∆). For some ε ∈ [0, 1], the
pair (X,∆) is called

(a) ε-kawamata log terminal (ε-klt, for short) if ai > −1 + ε for all i;

(b) ε-log canonical (ε-lc, for short) if ai ≥ −1 + ε for all i;

(c) terminal if ai > 0 for all f -exceptional divisors Fi.

1



Note that 0-klt (resp. 0-lc) is just klt (resp. lc) in the usual sense.

Definition 1.1.3. A variety X is of ε-Fano type if there exists an effective
Q-divisor ∆ such that (X,∆) is an ε-klt log Fano pair.

We are mainly interested in the boundedness of ε-Fano type varieties.

Definition 1.1.4. A collection of varieties {Xλ}λ∈Λ is said to be bounded if
there exists h : X → S a morphism of finite type of Neotherian schemes such
that for each Xλ, Xλ ' Xs for some s ∈ S.

Our motivation is the following BAB Conjecture due to A. Borisov, L.
Borisov, and V. Alexeev.

Conjecture 1.1.5 (BAB Conjecture). Fix 0 < ε < 1, an integer n > 0.
Then the set of all n-dimensional ε-Fano type varieties is bounded.

BAB Conjecture is one of the most important conjecture in birational
geometry and it is related to the termination of flips. As the approach to
this conjecture, we are interested in the following much weak conjecture for
anti-canonical volumes which is a consequence of BAB Conjecture.

Conjecture 1.1.6 (Weak BAB Conjecture). Fix 0 < ε < 1 and an integer
n > 0.

Then there exists a number M(n, ε) depending only on n and ε with the
following property:

If (X,∆) is an n-dimensional ε-klt log Fano pair, then

Vol(−(KX + ∆)) = (−(KX + ∆))n ≤M(n, ε).

Further, if KX is Q-Cartier, then

Vol(−KX) ≤M(n, ε).

BAB Conjecture was proved in dimension two by Alexeev [Ale94a] with
a simplified argument by Alexeev–Mori [AM04]. In dimension three or
higher, BAB Conjecture is still open. There are only some partial bounded-
ness results. For example, we have boundedness of smooth Fano manifolds
by Kollár–Miyaoka–Mori [KoMiMo92], that of terminal Q-Fano Q-factorial
threefolds of Picard number one by Kawamata [Kaw92a], that of canonical
Q-Fano threefolds by Kollár–Miyaoka–Mori–Takagi [KMMT00], and that of
toric varieties by Borisov–Borisov [BB92].

Weak BAB Conjecture in dimension two was treated by Alexeev [Ale94a],
Alexeev–Mori [AM04], and Lai [Lai12]. Recently, the author [Jiang13] gave
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an optimal value for the number M(2, ε). For Weak BAB Conjecture in
dimension three assuming that Picard number of X is one, an effective value
of M(3, ε) was announced by Lai [Lai12]. For general case of dimension three
and higher, Weak BAB Conjecture is still open.

As the main theorem in Chapter 3, we prove Weak BAB Conjecture in
dimension three.

Theorem 1.1.7. Weak BAB Conjecture holds for n = 3.

As a consequence, we get a different proof of a result on the boundedness
of log Fano varieties of fixed index in dimension three which was conjectured
by Batyrev, and proved by A. Borisov [Bor01] in dimension three and Hacon–
McKernan–Xu [HMX14, Corollary 1.8] in arbitrary dimension.

Corollary 1.1.8. Fix a positive integer r.
Let D be the set of all normal projective varieties X, where dimX = 3,

KX is Q-Cartier, and there exists an effective Q-divisor ∆ such that (X,∆)
is klt and −r(KX + ∆) is Cartier and ample.

Then D forms a bounded family.

1.1.1 Description of the proof

Firstly, we give an approach to Weak BAB Conjecture via Mori fiber spaces.

Definition 1.1.9. A projective morphism X → T between normal varieties
is called a Mori fiber space if the following conditions hold:

(i) X is Q-factorial with terminal singularities;

(ii) f is a contraction, i.e. f∗OX = OT ;

(iii) −KX is ample over T ;

(iv) ρ(X/T ) = 1;

(v) dimX > dimT .

At this time, we say that X is with a Mori fiber structure.

We raise the following conjecture for Mori fiber spaces.

Conjecture 1.1.10 (Weak BAB Conjecture for Mori fiber spaces). Fix 0 <
ε < 1, an integer n > 0.

Then there exists a number M(n, ε) depending only on n and ε with the
following property:

3



If X is an n-dimensional ε-Fano type variety with a Mori fiber structure,
then

Vol(−KX) ≤M(n, ε).

We prove the following theorem by using Minimal Model Program.

Theorem 1.1.11. Weak BAB Conjecture holds for fixed ε and n if and only
if Weak BAB Conjecture for Mori fiber spaces holds for fixed ε an n.

By Theorem 1.1.11, to consider the boundedness of anti-canonical vol-
umes of log Fano pairs, we only need to consider the ones with better sin-
gularities (Q-factorial terminal singularities) and with additional structures
(Mori fiber structures). This is the advantage of this theorem. In dimension
two, this theorem appears as a crucial step to get the optimal value of M(2, ε)
(c.f. [Jiang13]).

Restricting our interest to dimension three, we prove the following theo-
rem.

Theorem 1.1.12. Weak BAB Conjecture for Mori fiber spaces holds for
n = 3.

Theorem 1.1.7 follows from Theorems 1.1.11 and 1.1.12 directly.
To prove Theorem 1.1.12, we need to consider ε-Fano type 3-fold X with

a Mori fiber structure X → T . There are 3 cases:

(1) dimT = 0, X is a Q-factorial terminal Q-Fano 3-folds with ρ = 1;

(2) dimT = 1, X → T ' P1 is a del Pezzo fibration, i.e. a general fiber is
a smooth del Pezzo surface;

(3) dimT = 2, X → T is a conic bundle, i.e. a general fiber is a smooth
rational curve.

The second statement is implied by the following fact: if (X,∆) is a klt
log Fano pair, then X is rationally connected (see [Zha06, Theorem 1]), in
particular, for any surjective morphism X → T to a normal curve, T ' P1.

In Case (1), X is bounded by Kawamata [Kaw92a], and the optimal
bound of Vol(−KX) = (−KX)3 is 64 due to the classification on smooth Fano
3-folds of Iskovskikh and Mori–Mukai and by Namikawa’s result [Nam97]
(Gorenstein case) and Prokhorov [Pro07] (non-Gorenstein case).

We will mainly treat Cases (2) and (3).
One basic idea is to construct singular pairs which is not klt along fibers

of X → T . Then by Connectedness Lemma, we may find a non-klt center
intersecting with the fibers. Finally by restricting on a general fiber, we get
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the bound after some arguments on lower dimensional varieties. But several
difficulties arise here.

In Case (3), the difficulty arises in the construction of singular pair be-
cause we need to avoid components which are vertical over T . To do this,
we need a good understanding of the singularities and boundedness of the
surface T , which was done by several papers as [Ale94a], [MP08], and [Bir14].

In Case (2), the difficulty arises in the last step. After restricting on a
general fiber, we need to bound the (generalized) log canonical thresholds
on surfaces. So we are done by proving the following (generalized) Ambro’s
conjecture in dimension two.

Definition 1.1.13. Let (X,B) be a lc pair and D ≥ 0 be a Q-Cartier Q-
divisor. The log canonical threshold of D with respect to (X,B) is

lct(X,B;D) = sup{t ∈ Q | (X,B + tD) is lc}.

For the use of this thesis, we need to consider the case when D is not effective.
Let G be a Q-Cartier Q-divisor satisfying G + B ≥ 0, The generalized log
canonical threshold of G with respect to (X,B) is

glct(X,B;G) = sup{t ∈ [0, 1] ∩Q | (X,B + tG) is lc}.

Conjecture 1.1.14 (Ambro’s conjecture). Fix 0 < ε < 1 and integer n > 0.
Then there exists a number µ(n, ε) > 0 depending only on n and ε with

the following property:
If (Y,B) is an ε-klt log Fano pair of dimension n, then

inf{lct(Y,B;D) | D ∼Q −(KY +B), D ≥ 0} ≥ µ(n, ε).

Note that we do not assume any special conditions on the coefficients of
B. The left-hand side of the inequality is called α-invariant of (Y,B) which
generalizes the concept of α-invariant of Tian for Fano manifolds in differ-
ential geometry (see [CMG14, CS08, Tian87]). Recently Ambro [Amb14]
announced a proof of this conjecture assuming that (Y,B) is a toric pair
where an explicit sharp number µ(n, ε) was given. For the use of this paper,
we need a stronger version of this conjecture where D may not be effective.

Conjecture 1.1.15 (generalized Ambro’s conjecture). Fix 0 < ε < 1 and
integer n > 0.

Then there exists a number µ(n, ε) > 0 depending only on n and ε with
the following property:

If (Y,B) is an ε-klt weak log Fano pair of dimension n and Y has at worst
terminal singularities, then

inf{glct(Y,B;G) | G ∼Q −(KY +B), G+B ≥ 0} ≥ µ(n, ε).
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Note that Conjecture 1.1.14 follows from Conjecture 1.1.15 easily after
taking terminalization of (Y,B).

We prove the conjecture in dimension two by following some ideas in the
proof of BAB Conjecture in dimension two ([Ale94a, AM04]). But it seems
that this conjecture does not follow from BAB Conjecture trivially.

Theorem 1.1.16. Conjecture 1.1.15 holds for n = 2.

For the proof of Corollary 1.1.8, we basically follow the idea in [Bor01] to
bound the Hilbert polynomials by [KoMa83].

1.2 Boundedness of birationality

Definition 1.2.1. A normal projective variety X is called a weak Q-Fano
variety if X has at worst Q-factorial terminal singularities and the anti-
canonical divisor −KX is nef and big. A weak Q-Fano variety is said to be
Q-Fano if −KX is Q-ample and the Picard number ρ(X) = 1.

Definition 1.2.2. A normal projective variety X is said to be minimal if X
has at worst Q-factorial terminal singularities and the canonical divisor KX

is nef.

According to Minimal Model Program, Q-Fano varieties and minimal
varieties form fundamental classes in birational geometry.

Given an n-dimensional normal projective variety X with mild singular-
ities and a big Weil divisor L on X, we are interested in the geometry of
the rational map Φ|mL| defined by the linear system |mL|. By definition,
Φ|mL| is birational onto its image when m is sufficiently large. Therefore it is
interesting to find such a practical number m(n), depending only on dimX,
which stably guarantees the birationality of Φ|mL|. In fact, the following three
special cases are the most interesting:

(i) KX is nef and big, L = KX ;

(ii) KX ≡ 0, L is an arbitrary nef and big Weil divisor;

(iii) −KX is nef and big, L = −KX .

It is an interesting exercise to deal the case X being a smooth curve or
surface.

Theorem 1.2.3 (c.f. Bombieri [Bom73], Reider [Reider88]). Let S be a
smooth surface.
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(i) If KS is nef and big, then |mKS| gives a birational map for m ≥ 5;

(ii) If KS ≡ 0, then |mL| gives a birational map for m ≥ 3 and L an
arbitrary nef and big divisor;

(iii) If −KS is nef and big, then |−mKS| gives a birational map for m ≥ 3.

For a 3-fold X, when X is smooth, these cases were treated by Matsuki
[Mat86], Ando [Ando87], Fukuda [Fuk91], Oguiso [Ogu91], and many others,
and we have the following known results.

Theorem 1.2.4 (Matsuki [Mat86], Fukuda [Fuk91]). Let X be a smooth
3-fold.

(i) If KX is nef and big, then |mKX | gives a birational map for m ≥ 6;

(ii) If KX ≡ 0, then |mL| gives a birational map for m ≥ 6 and L an
arbitrary nef and big divisor;

(iii) If −KX is nef and big, then |−mKX | gives a birational map for m ≥ 4.

When X is a 3-fold with Q-factorial terminal singularities, Case (i) was
systematically treated by J. A. Chen and M. Chen [CC10a, CC10b, CC13].

Theorem 1.2.5 (Chen–Chen [CC13]). Let X be a minimal 3-fold of general
type (i.e KX is nef and big), then |mKX | gives a birational map for m ≥ 61.

We are going to treat Cases (ii) and (iii) systematically.

1.2.1 Q-Fano threefolds

In Chapter 4, for a weak Q-Fano 3-fold X, the anti-m-canonical map ϕ−m is
the rational map defined by the linear system | −mKX |. Such a number m3

that stably guarantees the birationality of ϕ−m3 exists due to the bounded-
ness of Q-Fano 3-folds, which was proved by Kawamata [Kaw92a], and the
boundedness of weak Q-Fano 3-folds proved by Kollár–Miyaoka–Mori–Takagi
[KMMT00]. It is natural to consider the following problem.

Problem 1.2.6. Find the optimal constant c such that ϕ−m is birational
onto its image for all m ≥ c and for all (weak) Q-Fano 3-folds.

The following example tells us that c ≥ 33.

Example 1.2.7 ([IF00, List 16.6, No.95]). The general weighted hypersur-
face X33 ⊂ P(1, 5, 6, 22, 33) is a Q-Fano 3-fold. It is clear that ϕ−m is bira-
tional onto its image for m ≥ 33, but ϕ−32 fails to be birational.
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It is worthwhile to compare the birational geometry induced from |mK|
on varieties of general type with the geometry induced from |−mK| on (weak)
Q-Fano varieties. An obvious feature on Fano varieties is that the behavior
of ϕ−m is not necessarily birationally invariant. For example, consider degree
2 (rational) del Pezzo surface S2 and P2, | −KP2| gives a birational map but
| −KS2| does not. This causes difficulties in studying Problem 1.2.6. In fact,
even if in dimension 3, there is no known practical upper bound for c in
written records.

When X is smooth, we may take c = 4 according to Ando [Ando87]
and Fukuda [Fuk91]. When X has terminal singularities, Problem 1.2.6 was
treated by M. Chen in [Chen11], where an effective upper bound of c in terms
of the Gorenstein index of X is proved (cf. [Chen11, Theorem 1.1]). Since,
however, the Gorenstein index of a weak Q-Fano 3-fold can be as large as
“840” (see Proposition 4.1.1), the number “3× 840 + 10 = 2530” obtained in
[Chen11, Theorem 1.1] is far from being optimal. It turns out that Problem
1.2.6 is closely related to the following problem (cf. [Chen11, Theorem 4.5]).

Problem 1.2.8. Given a (weak) Q-Fano 3-fold X, can one find the least
positive integer δ1 = δ1(X) such that dimϕ−δ1(X) > 1?

Problem 1.2.8 is parallel to the following question on 3-folds of general
type:

Let Y be a 3-fold of general type on which |nKY | is composed with
a pencil of surfaces for some fixed integer n > 0. Can one find
an integer m (bounded from above by a function in terms of n)
so that |mKY | is not composed with a pencil any more?

This question was solved by Kollár [Kol86] who proved that one may take
m ≤ 11n + 5. The result is a direct application of the semi-positivity of
f∗ω

l
Y/B since, modulo birational equivalence, one may assume that there is a

fibration f : Y −→ B onto a curve B. As far as we know, there is still no
known analogy of Kollár’s method in treating Q-Fano varieties.

Firstly, we shall prove the following theorem.

Theorem 1.2.9. Let X be a Q-Fano 3-fold. Then there exists an integer
n1 ≤ 10 such that dimϕ−n1(X) > 1.

Theorem 1.2.9 is close to be optimal due to the following example.

Example 1.2.10 ([IF00, List 16.7, No.85]). Consider the general codimen-
sion 2 weighted complete intersection X := X24,30 ⊂ P(1, 8, 9, 10, 12, 15)

which is a Q-Fano 3-fold. Then dimϕ−9(X) > 1 while dimϕ−8(X) = 1
since h0(−8KX) = 2.
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In fact, theoretically, there are only 4 possible weighted baskets for which
we need to take n1 = 10 (see Remark 4.2.13 and Subsection 4.2.6 for more
details and discussions). Theorem 1.2.9 allows us to prove the following
result.

Theorem 1.2.11. Let X be a Q-Fano 3-fold. Then ϕ−m is birational onto
its image for all m ≥ 39.

In particular, as a by-product we have the following corollary which is
optimal.

Corollary 1.2.12. Let X be a Q-Fano 3-fold.

(i) If h0(−KX) ≥ 3, then ϕ−m is birational onto its image for all m ≥ 6;

(ii) If h0(−KX) = 2, then ϕ−m is birational onto its image for all m ≥ 21.

The optimality is shown by the general weighted hypersurfaces X12 ⊂
P(1, 1, 1, 4, 6) and X42 ⊂ P(1, 1, 6, 14, 21) ([IF00, List 16.6, No.14, No.88]).

T. Sano suggested that we can consider the generic finiteness of ϕ−m, and
we get the following result.

Theorem 1.2.13. Let X be a Q-Fano 3-fold. Then ϕ−m is generically finite
onto its image for all m ≥ 28.

Note that in Example 1.2.7, ϕ−22 is generically finite onto its image but
ϕ−21 is not.

A key point in proving Theorem 1.2.9 is that we have ρ(X) = 1, which is
not the case for arbitrary weak Q-Fano 3-folds. Therefore we should study
weak Q-Fano 3-folds in an alternative way. Our result is as follows.

Theorem 1.2.14. Let X be a weak Q-Fano 3-fold. Then dimϕ−n2(X) > 1
for all n2 ≥ 71.

Theorem 1.2.14 allows us to study the birationality.

Theorem 1.2.15. Let X be a weak Q-Fano 3-fold. Then ϕ−m is birational
onto its image for all m ≥ 97.

Also we can prove similar result on generic finiteness, but it seems not so
interesting.
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1.2.2 Minimal 3-folds with K ≡ 0

In Chapter 5, for a minimal 3-fold X with KX ≡ 0 and an arbitrary nef and
big Weil divisor L on X, we are interested in the rational map Φ|mL| defined
by the linear system |mL|. If X is smooth, then |mL| gives a birational map
for m ≥ 6 by Fukuda [Fuk91]. If X is with Gorenstein terminal singularities
and q(X) := h1(OX) = 0, then |mL| gives a birational map for m ≥ 5 by
Oguiso–Peternell [OP95].

The motivation of Chapter 5 is to systematically study the birational
geometry of minimal 3-fold with K ≡ 0. For an arbitrary nef and big Weil
divisor L on X, we investigate the birationality of the linear system |mL|.
For special interest, we also investigate the birationality of the adjoint linear
system |KX +mL|.

The difficulty arises from the singularities of X, and the assumption that
L is only a Weil divisor. If we assume that L is Cartier, then the prob-
lem becomes relatively easy and can be treated by the method of Fukuda
[Fuk91] using Reider’s theorem [Reider88]. On the other hand, fortunately,
the singularities of minimal 3-folds with K ≡ 0 is not so complicated due to
Kawamata [Kaw86] and Morrison [Mor86], and this makes it possible to deal
with the birationality problem.

We prove the following theorem.

Theorem 1.2.16. Let X be a minimal 3-fold with KX ≡ 0 and a nef and
big Weil divisor L. Then |mL| and |KX + mL| give birational maps for all
m ≥ 17.

In fact, we prove a more general theorem.

Theorem 1.2.17. Let X be a minimal 3-fold with KX ≡ 0, a nef and big
Weil divisor L, and a Weil divisor T ≡ 0. Then |KX + mL + T | gives a
birational map for all m ≥ 17.

Moreover, by Log Minimal Model Program, the assumption that L is nef
can be weaken. We say that a divisor D has no stable base components if
|mD| has no base components for sufficiently divisible m.

Theorem 1.2.18. Let X be a minimal 3-fold with KX ≡ 0, a big Weil
divisor L without stable base components, and a Weil divisor T ≡ 0. Then
|KX + mL + T | gives a birational map for all m ≥ 17. In particular, |mL|
and |KX +mL| give birational maps for all m ≥ 17.

As a by-product, we prove a direct generalization of Fukuda [Fuk91] and
Oguiso–Peternell [OP95] which is optimal by the general weighted hypersur-
face X10 ⊂ P(1, 1, 1, 2, 5).

10



Theorem 1.2.19 (=Theorem 5.2.2). Let X be a minimal Gorenstein 3-fold
with KX ≡ 0, a nef and big Weil divisor L, and a Weil divisor T ≡ 0. Then
|KX +mL+ T | gives a birational map for all m ≥ 5.

11



2
Preliminaries

2.1 Volumes

Definition 2.1.1. Let X be an n-dimensional projective variety and D be
a Cartier divisor on X. The volume of D is the real number

Vol(D) = lim sup
m→∞

h0(X,OX(mD))

mn/n!
.

Note that the limsup is actually a limit. Moreover by the homogenous prop-
erty of the volume, we can extend the definition to Q-Cartier Q-divisors.
Note that if D is a nef Q-divisor, then Vol(D) = Dn.

For more background on volumes, see [Laz04, 11.4.A].

2.2 Hirzebruch surfaces

We recall some basic properties of the Hirzebruch surfaces Fn = PP1(OP1 ⊕
OP1(n)), n ≥ 0. Denote by h (resp. f) the class in Pic Fn of the tautological
bundle OFn(1) (resp. of a fiber). Then Pic Fn = Zh ⊕ Zf with f 2 = 0,
f · h = 1, h2 = n. If n > 0, there is a unique irreducible curve σn ⊂ Fn such
that σn ∼ h− nf , σ2

n = −n. For n = 0, we can also choose one curve whose
class in Pic F0 is h and denote it by σ0. Note that

−KFn ∼ 2h− (n− 2)f ∼ 2σn + (n+ 2)f.

Lemma 2.2.1. For an effective Q-divisor D ∼Q −KFn and a fiber f , multfD ≤
n+ 2.
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Proof. Since D − (multfD)f is effective, (D − (multfD)f) · h ≥ 0. On the
other hand, (D − (multfD)f) · h = n+ 2−multfD.

Lemma 2.2.2. Let T = P2 or Fn, then for an effective Q-divisor D ∼Q −KT

and a point Q, multQD ≤ n + 4 holds. Moreover, if we write D =
∑

j bjDj

by its components and assume that bj ≤ 1 for all j, then
∑

j bj ≤ 4.

Proof. If T = P2, taking a general line L through Q, we have

3 = (D · L) ≥ multQ(D).

If T = Fn, take f be the fiber passing through Q, by Lemma 2.2.1 and
intersection theory, we have

2 = D · f ≥ multQD −multfD ≥ multQD − n− 2.

For the latter statement, if T = Fn, then the conclusion follows by [AM04,
Lemma 1.4]. If T = P2, then

∑
bj ≤ 3 by degree computation.

2.3 Non-klt centers and connectedness lemma

Definition 2.3.1. Let X be a normal projective variety and ∆ be a Q-divisor
on X such that KX + ∆ is Q-Cartier. Let f : Y → X be a log resolution of
(X,∆), write

KY = f ∗(KX + ∆) +
∑

aiFi,

where Fi is a prime divisor. Fi is called a non-klt place if ai ≤ −1. A
subvariety V ⊂ X is called a non-klt center of (X,∆) if it is the image of a
non-klt place. The non-klt locus Nklt(X,∆) is the union of all non-klt centers
of (X,∆). A non-klt center is maximal if it is an irreducible component of
Nklt(X,∆).

The following lemma suggests a standard way to construct non-klt cen-
ters.

Lemma 2.3.2 (cf. [KoMo98, Lemma 2.29]). Let (X,∆) be a pair and Z ⊂ X
be a close subvariety of codimesion k such that Z is not contained in the
singular locus of X. If multZ∆ ≥ k, then Z is a non-klt center of (X,∆).

Recall that the multiplicity multZF of a divisor F along a subvariety Z
is defined by the multiplicity multxF of F at a general point x ∈ Z.

Unfortunately, the converse of Lemma 2.3.2 is not true unless k = 1.
Usually we do not have good estimations for the multiplicity along a non-klt
center but the following lemma.
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Lemma 2.3.3 (cf. [Laz04, Theorem 9.5.13]). Let (X,∆) be a pair and Z ⊂
X be a non-klt center of (X,∆) such that Z is not contained in the singular
locus of X. Then multZ∆ ≥ 1.

If we assume some simple normal crossing condition on the boundary,
we can get more information on the multiplicity along a non-klt center. For
simplicity, we just consider surfaces.

Lemma 2.3.4 (cf. [McK02, 4.1 Lemma]). Fix 0 < e < 1. Let S be a smooth
surface, B be an effective Q-divisor, and D be a (not necessarily effective)
simple normal crossing supported Q-divisor. Assume that coefficients of D
are at most e and multPB ≤ 1 − e for some point P , then for arbitrary
divisor E centered on P over S, aE(S,B + D) ≥ −e. In particular, if Z
is a non-klt center of (S,B + D) and coefficients of D are at most e, then
multZB > 1− e.

Proof. By taking a sequence of point blow-ups, we can get the divisor E.
Consider the blow-up at P , we have f : S1 → S with KS1 +B1 +D1 +mE1 =
f ∗(KS + B + D) where B1 and D1 are the strict transforms of B and D
respectively, and E1 is the exceptional divisor with m = multP (B+D)−1 ≤
1− e+ 2e−1 = e. Now D1 +mE1 is again simple normal crossing supported
and multQB1 ≤ multPB for Q ∈ E1. Hence by induction on the number
of blow-ups, we conclude that the coefficient of E is at most e and hence
aE(S,B +D) ≥ −e.

We have the following connectedness lemma of Kollár and Shokurov for
non-klt locus (cf. Shokurov [Sho93], Kollár [Kol+92, 17.4]).

Theorem 2.3.5 (Connectedness Lemma). Let f : X → Z be a proper
morphism of normal varieties with connected fibers and D is a Q-divisor
such that −(KX + D) is Q-Cartier, f -nef and f -big. Write D = D+ −D−
where D+ and D− are effective with no common components. If D− is f -
exceptional (i.e. all of its components have image of codimension at least 2),
then Nklt(X,D) ∩ f−1(z) is connected for any z ∈ Z.

Remark 2.3.6. There are two main cases of interest of Connectedness Lemma:

(i) Z is a point and (X,D) is a weak log Fano pair. Then Nklt(X,D) is
connected.

(ii) f : X → Z is birational, (Z,B) is a log pair and KX+D = f ∗(KZ+B).
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2.4 Rational map defined by a Weil divisor

For two linear systems |A| and |B|, we write |A| � |B| if

|B| ⊃ |A|+ fixed effective divisor.

In particular, if A ≤ B as divisors, then |A| � |B|.
Consider an integral Q-Cartier Weil divisor D on X with h0(X,D) ≥ 2.

We study the rational map defined by |D|, say

X
ΦD
99K Ph0(D)−1

which is not necessarily well-defined everywhere. By Hironaka’s big theorem,
we can take successive blow-ups π : Y → X such that:

(i) Y is smooth projective;

(ii) the movable part |M | of the linear system |bπ∗(D)c| is base point free
and, consequently, the rational map γ := ΦD ◦ π is a morphism;

(iii) the support of the union of π−1
∗ (D) and the exceptional divisors of π is

of simple normal crossings.

Let Y
f−→ Γ

s−→ Z be the Stein factorization of γ with Z := γ(Y ) ⊂
Ph0(D)−1. We have the following commutative diagram.

X

Y

Z

Γ-

? ?

@
@
@
@
@R

------------

f

sπ

ΦD

γ

Case (fnp). If dim(Γ) ≥ 2, a general member S of |M | is a smooth
projective surface by Bertini’s theorem. We say that |D| is not composed
with a pencil of surfaces.

Case (fp). If dim(Γ) = 1, i.e. dim ΦD(X) = 1, a general fiber S of f is
an irreducible smooth projective surface by Bertini’s theorem. We may write

M =
a∑
i=1

Si ≡ aS

where Si is a smooth fiber of f for all i. We say that |D| is composed
with a pencil of surfaces. It is clear that a ≥ h0(D) − 1. Furthermore,
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a = h0(D) − 1 if and only if Γ ∼= P1, and then we say that |D| is composed
with a rational pencil of surfaces. In particular, if q(X) = 0, then Γ ∼= P1

since g(Γ) ≤ q(Y ) = q(X) = 0. We can write

|D| = |nS ′|+ E,

where |S ′| = |π∗S| is an irreducible rational pencil, |nS ′| is the movable part,
and E is the fixed part. And we collect a couple of basic facts about rational
pencils as follows.

Lemma 2.4.1. Keep the same notation as above. If |D| = |nS ′| + E is
composed with a rational pencil of surfaces, then n = h0(D)− 1.

Lemma 2.4.2. If |D1| = |k1S1| + E1 and |D2| = |k2S2| + E2 are composed
with rational pencils of surfaces and D1 ≤ D2, then |S1| = |S2|.

Proof. Since D1 ≤ D2, we have Mov|D1| ≤ Mov|D2|. Hence |S1| � |k2S2|.
Thus |S1| � |S2| by the irreducibility of |S1|. Then by h0(S1) = h0(S2) = 2
and |S1|, |S2| are movable, we have |S1| = |S2|.

We say that |D| and |D′| are composed with the same pencil if |D| and
|D′| are composed with pencils and they define the same fibration structure
Y → Γ.

Define

ι = ι(D) :=

{
1, Case (fnp);

a, Case (fp).

Clearly, in both cases, M ≡ ιS with ι ≥ 1.

Definition 2.4.3. For both Case (fnp) and Case (fp), we call S a generic
irreducible element of |M |.

We may also define “a generic irreducible element” of a moving linear
system on any surface in the similar way.

2.5 Reid’s Riemann–Roch formula

Let X be a 3-fold with at most Q-factorial terminal singularities. Denote by
rX or i(X) the Gorenstein index or local index of X, i.e. the Cartier index
of KX . By Kawamata [Kaw88, Corollary 5.2], for arbitrary Weil divisor D
on X, i(X)D is a Cartier divisor.
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A basket B is a collection of pairs of integers (permitting weights), say
{(bi, ri) | i = 1, · · · , s; bi is coprime to ri}. For simplicity, we will alterna-
tively write a basket as follows, say

B = {(1, 2), (1, 2), (2, 5)} = {2× (1, 2), (2, 5)}.

Let X be a 3-fold with Q-factorial terminal singularities. According to
Reid [Reid87], for a Weil divisor D on X,

χ(D) = χ(OX) +
1

12
D(D −KX)(2D −KX) +

1

12
(D · c2) +

∑
Q

cQ(D),

where the last sum runs over Reid’s basket of orbifold points. If the orbifold
point Q is of type 1

rQ
(1,−1, bQ) and iQ = iQ(D) is the local index of divisor

D at Q (i.e. D ∼ iQKX around Q, 0 ≤ iQ < r), then

cQ(D) = −
iQ(r2

Q − 1)

12rQ
+

iQ−1∑
j=0

jbQ(rQ − jbQ)

2rQ
.

Here the symbol · means the smallest residue mod rQ and
∑−1

j=0 := 0. We
can write Reid’s basket as BX = {(bQ, rQ)}Q. Note that we may assume
0 < bQ ≤ rQ

2
. And recall that rX = i(X) = l.c.m.{rQ ∈ BX}.

Write

χsing(D) :=
∑
Q

cQ(D) and

χreg(D) := χ(OX) +
1

12
D(D −KX)(2D −KX) +

1

12
(D · c2).

2.5.1 Weak Q-Fano 3-folds

Let X be a weak Q-Fano 3-fold. For any positive integer m, the num-
ber P−m(X) := h0(X,OX(−mKX)) is called the m-th anti-plurigenus of X.
Clearly, since −KX is nef and big, Kawamata–Viehweg vanishing theorem
[KaMaMa87, Theorem 1-2-5] implies

hi(−mKX) = hi(X,KX − (m+ 1)KX) = 0

for all i > 0 and m ≥ 0. In particular, χ(OX) = 1.
We make some remarks here on how to compute the term cQ(D):
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(1) If D = nKX for n ∈ Z, we take i = n (mod r) and then

cQ(nKX) = cQ(iKX) = −i(r
2 − 1)

12r
+

i−1∑
j=0

jb(r − jb)
2r

.

(2) If D = tKX for t ∈ Z+, then it is easy to see that

cQ(tKX) = −t(r
2 − 1)

12r
+

t−1∑
j=0

jb(r − jb)
2r

.

(3) By Reid’s formula, Kawamata–Veihweg vanishing theorem and Serre
duality, we have, for any n > 0,

P−n(X) = − χ(OX((n+ 1)KX))

=
1

12
n(n+ 1)(2n+ 1)(−K3

X) + (2n+ 1)− l(−n)

where l(−n) = l(n + 1) =
∑

i

∑n
j=1

jbi(ri−jbi)
2ri

and the sum runs over
Reid’s basket of orbifold points

BX = {(bi, ri) | i = 1, · · · , s; 0 < bi ≤
ri
2

; bi is coprime to ri}.

The above formula can be rewritten as:

P−1 =
1

2
(−K3

X +
∑
i

b2
i

ri
)− 1

2

∑
i

bi + 3,

P−m − P−(m−1) =
m2

2
(−K3

X +
∑
i

b2
i

ri
)− m

2

∑
i

bi + 2−∆m

where ∆m =
∑

i(
bim(ri−bim)

2ri
− bim(ri−bim)

2ri
) for any m ≥ 2.

2.5.2 Minimal 3-folds with K ≡ 0

Let X be a minimal 3-fold with KX ≡ 0. Note that for arbitrary nef and big
Weil divisor H, Kawamata–Viehweg vanishing theorem [KaMaMa87, Theo-
rem 1-2-5] implies

hi(H) = hi(KX + (H −KX)) = 0
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for all i > 0. For a nef and big Weil divisor L and a Weil divisor T ≡ 0,
Reid’s formula gives

h0(mL+ T ) = χ(OX) +
m3

6
L3 +

m

12
(L · c2) +

∑
Q

cQ(mL+ T ).

We make some remarks on estimating this formula. Recall that by Miyaoka
[Miy87], c2 is pseudo-effective and hence (L · c2) ≥ 0 holds. Also Reid’s
formula or Kawamata [Kaw86, Theorem 2.4] gives

χ(OX) =
∑
Q

r2
Q − 1

24rQ
. (2.5.1)

We define

λ(L) :=
1

6
L3 +

1

12
(L · c2).

Note that λ(L) is a numerical invariant of L. We can rewrite Reid’s formula
as following:

h0(mL+ T ) = χ(OX) +
m3 −m

6
L3 +mλ(L) +

∑
Q

cQ(mL+ T ).

And we have the following lemma.

Lemma 2.5.1. i(X)λ(L) ∈ Z>0. In particular, λ(L) ≥ 1
i(X)

.

Proof. For a singular point Q of type (b, r), note that the local index of
L+ iKX at Q runs over {0, 1, · · · , r − 1} if so does i. Hence we have

r−1∑
i=0

cQ(L+ iKX)

=
r−1∑
i=0

(
− i(r2 − 1)

12r
+

i−1∑
j=0

jb(r − jb)
2r

)
= − (r − 1)(r2 − 1)

24
+

r−1∑
i=1

i−1∑
j=0

jb(r − jb)
2r

= − (r − 1)(r2 − 1)

24
+

r−2∑
j=0

r−1∑
i=j+1

jb(r − jb)
2r

= − (r − 1)(r2 − 1)

24
+

r−2∑
j=1

(r − 1− j)jb(r − jb)
2r
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= − (r − 1)(r2 − 1)

24
+

r−1∑
k=2

(k − 1)
kb(r − kb)

2r
(k = r − j)

= − (r − 1)(r2 − 1)

24
+

1

2

r−1∑
k=1

((r − 1− k) + (k − 1))
kb(r − kb)

2r

= − (r − 1)(r2 − 1)

24
+
r − 2

2

r−1∑
k=0

kb(r − kb)
2r

= − (r − 1)(r2 − 1)

24
+
r − 2

2

r−1∑
j=0

j(r − j)
2r

= − r2 − 1

24
.

Hence by Reid’s formula,

i(X)−1∑
i=0

h0(L+ iKX)

=

i(X)−1∑
i=0

(
χ(OX) + λ(L) +

∑
Q

cQ(L+ iKX)
)

= i(X)χ(OX) + i(X)λ(L) +
∑
Q

(
−
r2
Q − 1

24
· i(X)

rQ

)
= i(X)λ(L).

Hence i(X)λ(L) ∈ Z. On the other hand, λ(L)> 0 since L is nef and big.

2.6 Intersection numbers and a non-pencil cri-

terion

We have the following lemma for intersection numbers.

Lemma 2.6.1. Let X be a normal projective 3-fold with Q-factorial terminal
singularities. Recall that i(X) is the local index of X, i.e. the Cartier index
of KX . Then for Weil divisors D1, D2, and D3 on X, (i(X)D1 ·D2 ·D3) ∈ Z.
In particular, if L is a nef and big Weil divisor on X, then L3 ≥ 1

i(X)
.

Proof. Recall that by Kawamata [Kaw88, Corollary 5.2], i(X)D1 is Cartier.
Take a resolution of isolated singularities φ : W → X. We may write KW =
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φ∗(KX) + ∆ where ∆ is an exceptional effective Q-divisor over those isolated
terminal singularities on X. Denote by D′i the strict transform of Di on W
for i = 1, 2, 3. By intersection theory, we have

(i(X)D1 ·D2 ·D3)X

= (φ∗(i(X)D1) · φ∗(D2) ·D′3)W

= (φ∗(i(X)D1) ·D′2 ·D′3)W

is an integer.

As a corollary, we give a criterion for a linear system not composing with
a pencil of surfaces by looking at its Hilbert polynomial.

Proposition 2.6.2. Let L be a nef and big Weil divisor. If

h0(mL) > i(X)L3m+ 1

for some integer m, then |mL| is not composed with a pencil of surfaces.

Proof. Assume that |mL| is composed with a pencil of surfaces. Set D := mL
and keep the same notation as in Section 2.4. Then we have

mπ∗(L) ≥M ≡ aS ≥ (h0(mL)− 1)S.

Note that by Lemma 2.6.1, i(X)π∗(L)2 · S is an integer. On the other hand,
π∗(L)2 · S is positive since π∗(L)|S is nef and big on S. Hence π∗(L)2 · S ≥

1
i(X)

. Thus we have mL3 ≥ (h0(mL) − 1)(π∗(L)2 · S) ≥ 1
i(X)

(h0(mL)− 1), a
contradiction.

2.7 Main reduction

We reduce the birationality and generic finiteness problems on a singular X
to that on its smooth model Y .

Lemma 2.7.1 (cf. [Chen11, Lemma 2.5]). Let W be a normal projective
variety on which there is an integral Weil Q-Cartier divisor D. Let h :
V −→ W be any resolution of singularities. Assume that E is an effective
exceptional Q-divisor on V with h∗(D) + E a Cartier divisor on V . Then

h∗OV (h∗(D) + E) = OW (D)

where OW (D) is the reflexive sheaf corresponding to the Weil divisor D.
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Lemma 2.7.2. Let X be a normal projective variety with Q-factorial termi-
nal singularities, D be a Weil divisor on X, and π : Y −→ X be a resolu-
tion. Then Φ|KX+D| is birational (resp. generically finite) if and only if so is
Φ|KY +dπ∗(D)e|.

Proof. Recall that
KY = π∗(KX) + Eπ

where Eπ is an effective Q-Cartier Q-divisor since X has at worst terminal
singularities. We have

KY + dπ∗(D)e
= π∗(KX) + Eπ + π∗(D) + E

= π∗(KX +D) + Eπ + E

where Eπ + E is an effective Q-divisor on Y exceptional over X. Lemma
2.7.1 implies

π∗OY (KY + dπ∗(D)e) = OX(KX +D).

Hence Φ|KX+D| is birational (resp. generically finite) if and only if so is
Φ|KY +dπ∗(D)e|.
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3
Boundedness of anti-canonical

volumes of singular log Fano
threefolds

In this chapter, we investigate the boundedness of the anti-canonical volume
of an ε-klt log Fano pair of dimension three. We will prove Theorem 1.1.7.

This chapter is organized as follows. In Section 3.1, we prove the reduc-
tion step to Mori fiber spaces (Theorem 1.1.11). In Section 3.2, we prove
generalized Ambro’s conjecture in dimension two (Theorem 1.1.16). In Sec-
tion 3.3, we prove Weak BAB Conjecture for Mori fiber spaces in dimension
three (Theorem 1.1.12). In Section 3.4, we prove the boundedness of log
Fano threefolds of fixed index (Corollary 1.1.8).

3.1 Reduction to Mori fiber spaces

In this section, we prove the reduction step to Mori fiber spaces (Theorem
1.1.11).

The “only if” direction is trivial, we only need to prove the “if” direction.
Fix 0 < ε < 1, an integer n > 0. Let (X,∆) be an ε-klt log Fano pair

of dimension n. By [BCHM10, Corollary 1.4.3], taking terminalization of
(X,∆) (or terminalization of X if KX is Q-Cartier), we have π : X1 → X
where KX1 + ∆X1 = π∗(KX + ∆), ∆X1 is an effective Q-divisor, X1 is Q-
factorial terminal, and (X1,∆X1) is ε-klt. Here −(KX1 + ∆X1) is nef and
big. By Kodaira’s lemma (cf. [KoMo98, Proposition 2.61]) there exist a Q-
divisor ∆1 such that ∆1 ≥ ∆X1 , −(KX1 + ∆1) is ample, and (X,∆1) is ε-klt.
In particular, X1 is Q-factorial terminal and of ε-Fano type.

23



Running K-MMP on X1, we get a sequence of normal projective varieties:

X1 99K X2 99K X3 99K · · · 99K Xr → T.

Since −KX1 is big, this sequence ends up with a Mori fiber space Xr → T
(cf. [BCHM10, Corollary 1.3.3]). In particular, Xr is Q-factorial terminal.

Being of ε-Fano type is preserved by MMP according to the following
lemma.

Lemma 3.1.1 (cf. [GOST15, Lemma 3.1]). Let Y be a projective normal
variety and f : Y → Z be a projective birational contraction.

(1) If Y is of ε-Fano type, so is Z;

(2) Assume that f is small, then Y is of ε-Fano type if and only if so is Z.

In particular, minimal model program preserves ε-Fano type.

Proof. The proof is almost the same as [GOST15, Lemma 3.1] where 0-
Fano type is considered. First we assume that Y is of ε-Fano type, that is,
there exists an effective Q-divisor ∆ on Y such that (Y,∆) is ε-klt log Fano
pair. Let H be a general effective ample divisor on Z and take a sufficiently
small rational number δ > 0 such that −(KY + ∆ + δf ∗H) is ample and
(Y,∆ + δf ∗H) is ε-klt. Then take a general effective ample Q-divisor A on
Y such that (Y,∆ + δf ∗H + A) is ε-klt and

KY + ∆ + δf ∗H + A ∼Q 0.

Then

KZ + f∗∆ + δH + f∗A = f∗(KY + ∆ + δf ∗H + A) ∼Q 0,

and
f ∗(KZ + f∗∆ + δH + f∗A) = KY + ∆ + δf ∗H + A.

Therefore, (Z, f∗∆ + δH + f∗A) is ε-klt. Hence (Z, f∗∆ + f∗A) is ε-klt and
−(KZ + f∗∆ + f∗A) ∼Q δH is ample, that is, Z is of ε-Fano type.

Next we assume that f is small and Z is of ε-Fano type. Let Γ be an
effective Q-divisor on Z such that (Z,Γ) is ε-klt log Fano pair. Let ΓY be
the strict transform of Γ on Y . Since f is small,

KY + ΓY = f ∗(Z + Γ).

Hence (Y,ΓY ) is ε-klt and −(KY + ΓY ) is nef and big. By Kodaira’s lemma,
there exist a Q-divisor Γ′ such that Γ′ ≥ ΓY , −(KY +Γ′) is ample, and (Y,Γ′)
is ε-klt, that is, Y is of ε-Fano type.

We proved the lemma.
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By Lemma 3.1.1, for all i, Xi is of ε-Fano type. To compare the volumes
between these varieties, we have the following lemma.

Lemma 3.1.2. Let Xi 99K Xi+1 be one step of K-MMP. Then

Vol(−KXi
) ≤ Vol(−KXi+1

).

Proof. Take a common resolution p : W → Xi, q : W → Xi+1. Then

p∗(KXi
) = q∗(KXi+1

) + E,

where E is an effective q-exceptional Q-divisor. Hence

Vol(−KXi
) = Vol(−p∗(KXi

))

= Vol(−q∗(KXi+1
)− E)

≤ Vol(−q∗(KXi+1
))

= Vol(−KXi+1
).

We proved the lemma.

Therefore we can compare the volumes on X and Xr by Lemma 3.1.2:

(−(KX + ∆))n = (−(KX1 + ∆X1))
n

= Vol(−(KX1 + ∆X1))

≤ Vol(−KX1)

≤ Vol(−KXr).

Now Xr is an n-dimensional ε-Fano type variety with a Mori fiber struc-
ture by construction. Assuming Weak BAB Conjecture for Mori fiber spaces,
there exists M(n, ε) such that

Vol(−KXr) ≤M(n, ε).

Hence
(−(KX + ∆))n ≤M(n, ε).

Moreover, if KX is Q-Cartier, then since we take X1 as the terminalization
of X, we have KX1 + F = π∗KX with F an effective Q-divisor. Hence

Vol(−KX) ≤ Vol(−KX1) ≤ Vol(−KXr) ≤M(n, ε).

We complete the proof of Theorem 1.1.11.
As a direct corollary, we recover the main result in [Jiang13] on Weak

BAB Conjecture in dimension two.
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Corollary 3.1.3. Fix 0 < ε < 1.
Then there exists a number

M(2, ε) := max
{

9, b2/εc+ 4 +
4

b2/εc

}
with the following property:

If (X,∆) is an ε-klt log del Pezzo pair, then

(KX + ∆)2 ≤M(2, ε).

Further, if KX is Q-Cartier, then

Vol(−KX) ≤M(2, ε).

Proof. By Theorem 1.1.11, we only need to consider the cases when X = P2

or Fn with n ≤ 2/ε (see [AM04, Lemma 1.4] or [Jiang13, Lemma 3.1]). And
the result follows by volume computation directly.

3.2 Generalized Ambro’s conjecture in dimen-

sion two

In this section, we prove generalized Ambro’s conjecture in dimension two
(Theorem 1.1.16).

Fix an ε-klt weak log del Pezzo pair (S,B) with S smooth and a Q-divisor
G ∼Q −(KS+B) such that G+B ≥ 0. Set a := glct(S,B;G). Since we work
on Q-divisors, a is a positive rational number. The problem is to bound a
from below. We may assume that a < 1. Set D = G + B ≥ 0. Then
(S,B + aG) = (S, (1− a)B + aD) is not klt. Note that D ∼Q −KS.

By Base Point Free Theorem (cf. [KoMo98, Theorem 3.3]), −(KS +B) is
semi-ample. Hence there exists an effective Q-divisor M such that KS +B+
M ∼Q 0 and (S,B + M) is ε-klt. For any birational morphism f : S → T
between smooth surfaces, we have

KS +B +M = f ∗(KT + f∗B + f∗M),

KS + (1− a)(B +M) + aD = f ∗(KT + (1− a)(f∗B + f∗M) + af∗D).

Hence (T, f∗B+ f∗M) is ε-klt and (T, (1− a)(f∗B+ f∗M) + af∗D) is not klt
with

KT + f∗B + f∗M ∼Q KT + (1− a)(f∗B + f∗M) + af∗D ∼Q 0.
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Recall that either S ' P2 or there exists a birational morphism g : S → Fn
with n ≤ 2/ε by [AM04, Lemma 1.4] or [Jiang13, Lemma 3.1].

Hence by replacing S by T = P2 or Fn, we may assume that there exists
a triple (T,BT , DT ) satisfying the following conditions:

(i) T = P2 or Fn with n ≤ 2/ε;

(ii) BT , DT are effective Q-divisors on T ;

(iii) (T,BT ) is ε-klt and (T, (1− a)BT + aDT ) is not klt;

(iv) KT +BT ∼Q KT + (1− a)BT + aDT ∼Q 0, equivalently, BT ∼Q DT ∼Q
−KT .

Since (T, (1 − a)BT + aDT ) is not klt, we may take a sequence of point
blow-ups

Tr+1 → Tr → · · · → T2 → T1 = T

where Ti+1 → Ti is the blow-up at a non-klt center Pi ∈ Nklt(Ti, (1− a)Bi +
aDi+Ei) where Bi and Di are the strict transforms of BT and DT respectively
and

KTi + (1− a)Bi + aDi + Ei = π∗i (KT + (1− a)BT + aDT ),

where πi : Ti → T is the composition map and Ei is a πi-exceptional Q-
divisor. We stop this process at Tr+1 if

dim Nklt(Tr+1, (1− a)Br+1 + aDr+1 + Er+1) > 0.

Since Pi is a non-klt center of (Ti, (1−a)Bi+aDi+Ei), multPi
((1−a)Bi+aDi+

Ei) ≥ 1. Note that the coefficients of Ei are (multPj
((1−a)Bj+aDj+Ej)−1)

for j < i, hence Ei is effective for all i. Furthermore, we may assume that
multPi

Bi is non-increasing. Take the integer k ≤ r such that multPi
Bi ≥ ε/2

for i ≤ k and multPi
Bi < ε/2 for i > k. Write BT =

∑
j bjB

j and Bi =∑
j bjB

j
i by components. We have bj < 1 − ε since (T,BT ) is ε-klt. Recall

that
∑

j bj ≤ 4 by Lemma 2.2.2.

Claim 1. If multBj(aDT ) > ε/2 for some j, then a ≥ ε2/(4 + 4ε).

Proof. Recall that T = P2 or Fn with n ≤ 2/ε.
If T = P2, then multBjDT ≤ 3 be degree counting. If T = Fn and Bj is a

fiber, then multBjDT ≤ n+ 2 ≤ 2/ε+ 2 by Lemma 2.2.1. If T = Fn and Bj

is not a fiber, then multBjDT ≤ DT · f = 2 where f is a fiber. Hence

a ≥ ε

2multBjDT

≥ ε2

4 + 4ε
.

We proved the claim.
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Since we need a lower bound of a, from now on, we may assume that
multBj(aDT ) ≤ ε/2 for all j. In particular, multBj

i
(aDi) ≤ ε/2 and

multBj
i
((1− a)Bi + aDi) < 1− ε/2

for all i and j.

Claim 2. (Bj
k+1)2 ≥ −4/ε for all j.

Proof. If (Bj
k+1)2 < 0, then

−2 ≤ 2pa(B
j
k+1)− 2 = (KTk+1

+Bj
k+1) ·Bj

k+1

=
ε

2
(Bj

k+1)2 + (KTk+1
+ (1− ε

2
)Bj

k+1) ·Bj
k+1

≤ ε

2
(Bj

k+1)2 + (KTk+1
+ (1− a)Bk+1 + aDk+1 + Ek+1) ·Bj

k+1

=
ε

2
(Bj

k+1)2 < 0,

Hence we proved the claim.

Now we can bound the number k. On Tk+1, we have

(Bk+1)2 = (
∑
j

bjB
j
k+1)2 ≥

∑
j

b2
j(B

j
k+1)2 ≥ (

∑
j

b2
j)(−4/ε)

≥ (
∑
j

bj)(1− ε)(−4/ε) ≥ 16− 16

ε

and (B1)2 = (KT )2 ≤ 9. On the other hand, at each blow-up, (Bi)
2 decreases

by at least ε2/4 by the assumption multPi
Bi ≥ ε/2 for i ≤ k. Hence

k ≤ 9− (16− 16/ε)

ε2/4
≤ 64

ε3
.

Now we consider π∗k+1(aDT ) on Tk+1.

Claim 3. There exists a point Q on Tk+1 such that multQπ
∗
k+1(aDT ) ≥ ε/4.

Proof. Consider the pair (Tk+1, (1−a)Bk+1 +aDk+1 +Ek+1). Note that Ek+1

is simple normal crossing supported.
Assume that there exists a curve E with coefficient at least 1 − 3ε/4 in

Ek+1, that is,

multE(KTk+1
− π∗k+1(KT + (1− a)BT + aDT )) ≤ −1 + 3ε/4.
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On the other hand, since (T, (1− a)BT ) is ε-klt,

multE(KTk+1
− π∗k+1(KT + (1− a)BT )) ≥ −1 + ε.

Hence multEπ
∗
k+1(aDT ) ≥ ε/4.

If all coefficients of Ek+1 are smaller than 1− 3ε/4, then k < r and Pk+1

is a non-klt center of (Tk+1, (1− a)Bk+1 + aDk+1 +Ek+1). By Lemma 2.3.4,
multPk+1

((1 − a)Bk+1 + aDk+1) ≥ 3ε/4. Then multPk+1
(aDk+1) ≥ ε/4 since

multPk+1
Bk+1 < ε/2 by assumption. In particular, multPk+1

π∗k+1(aDT ) ≥
multPk+1

(aDk+1) ≥ ε/4.
We proved the claim.

Now we will estimate multQ1(aDT ) where Q1 is the image of Q on T . By
removing unnecessary blow-ups, we may assume that we have a sequence of
blow-ups

Tk+1 → Tk → · · · → T2 → T1 = T

where fi+1 : Ti+1 → Ti is the blow-up at Qi which is the image of Q on Ti
with k ≤ 64/ε3. Recall that πi : Ti → T is the composition map and Di is
the strict transform of DT on Ti. Denote Ci+1 to be the exceptional divisor
of fi+1 and Cj

i+1 be its strict transform on Tj for j ≥ i+ 1. We can write

π∗j (aDT ) = aDj +
∑

2≤i≤j

ciC
j
i ,

with ci = multQi−1
π∗i−1(aDT ).

Claim 4. If multQ1(aDT ) ≤ α, then multQi
π∗i (aDT ) ≤ (Fi+1 − 1)α for 1 ≤

i ≤ k + 1. Here Fn is the Fibonacci number with relation Fn = Fn−1 + Fn−2

for all n ≥ 2 and F0 = F1 = 1.

Proof. We run induction on i. The case i = 1 is trivial. Assume the con-
clusion holds for i < j, then noting that Qj is contained in at most two
exceptional curves, we have

multQj
π∗j (aDT ) = multQj

(aDj +
∑

2≤i≤j

ciC
j
i )

≤ multQj
(aDj) + (Fj − 1)α + (Fj−1 − 1)α

≤ multQ1(aD1) + (Fj − 1)α + (Fj−1 − 1)α

≤ (Fj+1 − 1)α.

We proved the claim.
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By Claims 3 and 4, multQ1(aDT ) ≥ ε/(4Fk+2 − 4). Recall that DT ∼Q
−KT and T = P2 or Fn with n ≤ 2/ε. By Lemma 2.2.2, multQ1(DT ) ≤ n+4,
combining with the inequality k ≤ 64/ε3, we have

a ≥ ε2

(2 + 4ε)(4Fb64/ε3c+2 − 4)
,

and hence we may take this number to be µ(2, ε).
We have proved Theorem 1.1.16.

3.3 Weak BAB Conjecture for Mori fiber spaces

in dimension three

In this section, we prove Weak BAB Conjecture for Mori fiber spaces in
dimension 3 (Theorem 1.1.12). Recall that by a Mori fiber space we always
mean a Q-factorial terminal one.

Fix 0 < ε < 1 and consider an ε-klt log Fano pair (X,∆) of dimension 3
with a Mori fiber structure. As explained, there are three cases:

(1) X is a Q-factorial terminal Q-Fano 3-folds with ρ = 1;

(2) X → P1 is a del Pezzo fibration;

(3) X → S is a conic bundle.

As mentioned before, Case (1) is done by Kawamata [Kaw92a]. We treat
Cases (2) and (3) in the following two subsections.

3.3.1 Contractions to a curve

In this subsection, we treat the case under a more general setting when there
is a contraction f : X → P1 (e.g. X has a del Pezzo fibration structure).

Theorem 3.3.1. Let (Y,B) be an ε-klt log Fano pair of dimension n with a
contraction g : Y → P1 and Y having terminal singularities. Assume that
Weak BAB Conjecture and generalized Ambro’s conjecture hold in dimension
n−1 with M(n−1, ε) and µ(n−1, ε) the numbers defined in these conjectures.
Then

Vol(−KY ) ≤ 2nM(n− 1, ε)

µ(n− 1, ε)
.
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Proof. Note that Y is terminal by assumption. Hence a general fiber F of
g is terminal and of ε-Fano type of dimension n − 1 by adjunction formula.
In particular, KF is Q-Cartier. It follows that Vol(−KF ) ≤ M(n − 1, ε) by
Weak BAB Conjecture in dimension n− 1.

Fix a rational number s satisfying

Vol(−KY )

nM(n− 1, ε)
− 1

A
< s <

Vol(−KY )

nM(n− 1, ε)

for sufficiently large number A. To bound Vol(−KY ) from above, it is suffi-
cient to bound s from above. And we may assume that s > 2.

The following lemma allows us to construct non-klt centers.

Claim 5. For a general fiber F of g, −KY −sF is Q-effective. In particular,
there exists an effective Q-divisor BF ∼Q −1

s
KY such that F is a non-klt

center of (Y,BF ).

Proof. For a positive integer p and a sufficiently divisible positive integer m,
we have exact sequence

0→ OY (−mKY−pF )→ OY (−mKY−(p−1)F )→ OF (−mKY−(p−1)F )→ 0.

Note that OF (−mKY − (p− 1)F ) = OF (−mKF ). Hence

h0(Y,OY (−mKY−pF )) ≥ h0(Y,OY (−mKY−(p−1)F ))−h0(F,OF (−mKF )).

Inductively, we have

h0(Y,OY (−mKY − pF )) ≥ h0(Y,OY (−mKY ))− ph0(F,OF (−mKF )).

We may take p = sm since m is sufficiently divisible. By the definition of
volume, we have

lim sup
m→∞

h0(Y,OY (−mKY ))− smh0(F,OF (−mKF ))

mn

=
1

n!
Vol(−KY )− s

(n− 1)!
Vol(−KF ) > 0.

Hence h0(Y,OY (−mKY − smF )) > 0 for m sufficiently divisible, that is,
−KY − sF is Q-effective. In particular, there exists an effective Q-divisor
BF ∼Q −1

s
KY such that BF − F ≥ 0, and hence F is a non-klt center of

(Y,BF ).
We proved the claim.
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Now for two general fibers F1 and F2, consider B′ = BF1 + BF2 . By
construction, F1 ∪ F2 ⊂ Nklt(Y, (1− 2

s
)B +B′). Note that

−(KY + (1− 2

s
)B +B′) ∼Q −(1− 2

s
)(KY +B)

is ample, by Connectedness Lemma, Nklt(Y, (1 − 2
s
)B + B′) is connected.

Hence there is a non-klt center W ⊂ Nklt(Y, (1 − 2
s
)B + B′) connecting F1

and F2. In particular, W dominates P1. Restricting on a general fiber F , by
adjunction formula, we have (F,B|F ) is ε-klt log Fano with F terminal and
(F, (1− 2

s
)B|F + B′|F ) is not klt (see [KoMo98, Lemma 5.17, Lemma 5.50])

with B′|F ∼Q −2
s
KF . Hence

2

s
≥ glct(F,B|F ;

s

2
B′|F −B|F ).

To bound s from above, generalized Ambro’s conjecture arises naturally. By
generalized Ambro’s conjecture in dimension n− 1,

s ≤ 2

µ(n− 1, ε)
,

and hence

Vol(−KY ) ≤ 2nM(n− 1, ε)

µ(n− 1, ε)
.

We completed the proof.

In particular, by Corollary 3.1.3 and Theorem 1.1.16, Weak BAB Con-
jecture and generalized Ambro’s conjecture hold in dimension 2, and hence
the following corollary holds.

Corollary 3.3.2. Let (X,∆) be an ε-klt log Fano pair of dimension 3 with
a contraction f : X → P1 and X having terminal singularities. Then

Vol(−KX) ≤ 6M(2, ε)

µ(2, ε)
.

3.3.2 Conic bundles

In this subsection, we treat the case that X has a conic bundle structure
f : X → S. Firstly we collect some facts about singularities of the surface
S.

Theorem 3.3.3. Let (X,∆) be an ε-klt log Fano pair of dimension 3 and
f : X → S be a Mori fiber space to a surface S, then
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(i) S has only Du Val singularities of type A;

(ii) There exists an effective Q-divisor ∆S on S, such that (S,∆S) is klt log
del Pezzo;

(iii) S is a Mori dream space;

(iv) There exists an effective Q-divisor ∆′S on S, such that (S,∆′S) is δ(ε)-
klt and KS + ∆′S ∼Q 0, where δ(ε) is a positive real number depending
only on ε;

(v) The family of such S is bounded, in particular, the Picard number of
minimal resolution of S is bounded by 128/δ(ε)5.

(vi) S is N(ε)-factorial, i.e. for a Weil divisor D on S, N(ε)D is Cartier,
where N(ε) is a positive integer depending only on ε.

Proof. (i) is by [MP08, (1.2.7) Theorem]. (ii) is by [FG12, Corollary 3.3].
(iii) is by (ii) and [BCHM10, Corollary 1.3.2]. (iv) is by [Bir14, Corollary
1.7] since we may find a boundary ∆′ ≥ ∆ such that (X,∆′) is ε-klt and
KX + ∆′ ∼Q 0. (v) is by (iv), [Ale94a, Theorem 6.8], and [AM04, Theorem
1.8]. (vi) is a direct consequence of (i) and (v).

For the definition and properties of Mori dream spaces we refer to the
famous paper by Hu–Keel [HK00]. We will use the following property of
Mori dream spaces: every nef divisor on S is semi-ample and there are finitely
many irreducible curves with negative self intersection. In particular, a curve
through a general point is nef. By a curve we always mean an irreducible
reduced one.

If there is a curve C on S satisfying (C)2 = 0, then C is semi-ample. In
particular, a multiple of C induces a contraction S → P1 and we are done by
Subsection 3.3.1. Hence we may assume that there does not exist such curve
C on S satisfying (C)2 = 0.

Fix a positive rational number t satisfying

Vol(−KX)

24
− 1

A
< t2 <

Vol(−KX)

24

for sufficiently large number A. To bound Vol(−KX) from above, it is suffi-
cient to bound t from above. And we may assume that t > 768N(ε)/ε.

Lemma 3.3.4. For a general fiber F of f ,

h0(X,OX(−mKX)⊗ I2tm
F ) > 0

for m sufficiently divisible, where IF is the ideal sheaf of F . In particular,
there exists an effective Q-divisor ∆F ∼Q −1

t
KX such that multF∆F ≥ 2.
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Proof. For a positive integer p and a sufficiently divisible positive integer m,
we have exact sequence

0→ OX(−mKX)⊗IpF → OX(−mKX)⊗Ip−1
F → OX(−mKX)⊗Ip−1

F /IpF → 0.

Note that Ip−1
F /IpF = Sp−1(IF/I2

F ) (see [Har77, II. Theorem 8.24]) and
IF/I2

F = O⊕2
F . Hence

h0(X,OX(−mKX)⊗IpF ) ≥ h0(X,OX(−mKX)⊗Ip−1
F )−ph0(F,OF (−mKF )).

Inductively, we have

h0(X,OX(−mKX)⊗IpF ) ≥ h0(X,OX(−mKX))−p(p+ 1)

2
h0(F,OF (−mKF )).

We may take p = 2tm since m is sufficiently divisible. By the definition of
volume, we have

lim sup
m→∞

h0(X,OX(−mKX))− (2t2m2 + tm)h0(F,OF (−mKF ))

m3

=
1

6
Vol(−KX)− 2t2Vol(−KF ) > 0.

Note that F ' P1 and Vol(−KF ) = 2. Hence h0(X,OX(−mKX)⊗I2tm
F ) > 0

for m sufficiently divisible. In particular, there exists an effective Q-divisor
∆F ∼Q −1

t
KX such that multF∆F ≥ 2.

A prime divisor V on X is vertical if f(V ) is a curve or V does not
dominate S. Note that for a curve C on S passing through a general point,
there is only one vertical prime divisor contained in f−1(C) and we denote it
by VC . It is easy to see that f ∗C = VC as Weil divisors is well defined (since
removing finitely many points of S, f is flat). For a general point P ∈ S,
denote FP be the fiber at P .

We can modify the Q-divisor ∆F to control vertical divisors by the fol-
lowing lemma.

Lemma 3.3.5. For a general point P ∈ S, there exist an effective Q-divisor
BP ∼Q −aP

t
KX for some aP ≤ 384N(ε)/ε such that

(i) multFP
BP ≥ 2, and

(ii) For any curve C passing through P , multVCBP ≤ ε/2.
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Proof. Write ∆FP
= ∆0+

∑
i biVCi

where ∆0 does not contain vertical divisors
passing through FP and Ci is a curve passing through P . If bi ≤ ε/2 for all
i, then we can take BP = ∆FP

with aP = 1.
Now we assume that b1 > ε/2. Note that by assumption, (C1)2 > 0

and N(ε)C1 is Cartier. So N(ε)C1 is a nef and big Cartier divisor. Hence
by Kollár’s Effective Base Point Free Theorem (see [Kol93, 1.1 Theorem]),
|96N(ε)C1| is base point free. It follows that |96N(ε)C1| defines a generically
finite map Φ : S → P(|96N(ε)C1|). Since P ∈ C1, P is not on the contracted
curves of Φ. Hence by taking the pull back of general hyperplanes passing
through Φ(P ), we can write 96N(ε)C1 ∼Q

∑
j hjHj with 96N(ε)C1 ∼ Hj a

general curve passing through P , 0 < hj ≤ ε/4 for all j, and
∑

j hj = 1.
For i > 1, since Ci is semi-ample, we may take Ci ∼Q Di such that Di is an
effective Q-divisor on S passing through a general point but not containing
P . Now define

BP :=
192N(ε)

b1

(
∆0 +

∑
i>1

bif
∗Di

)
+ 2

∑
j

hjf
∗Hj ∼Q −

192N(ε)

b1t
KX ,

and we can take aP = 192N(ε)/b1 ≤ 384N(ε)/ε. Note that

multFP
BP ≥ multP

(
2
∑
j

hjHj

)
≥ 2.

And by construction, for every curve C passing through P , if C = Hj for
some j, then multVCBP = 2hj ≤ ε/2; otherwise multVCBP = 0.

Hence we proved the lemma.

Take two general points P1 and P2 on S. For simplicity, for i = 1, 2, we
denote FPi

= Fi, aPi
= ai, and BPi

= Bi. Note that by construction,

Fi ⊂ Nklt(X,Bi).

Case 1. There exists a non-klt center E of dimension 2 of (X,Bi) con-
taining Fi for some i = 1 or 2.

In this case,
multE(Bi) ≥ 1.

By construction of Bi, E is not vertical. Restricting on a general fiber F of
f , we have

2ai
t

= −ai
t
KX · F = Bi · F ≥ E · F ≥ 1.

Hence

t ≤ 2ai ≤
768N(ε)

ε
.
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Case 2. Fi is a maximal non-klt center of (X,Bi) for i = 1 and 2.
Since P1 is a general point, we may assume F1 6⊂ Supp(∆ + B2). Hence

F1 is a maximal non-klt center of (X, (1 − a1+a2
t

)∆ + B1 + B2) and F2 is a
non-klt center. Note that

−(KX + (1− a1 + a2

t
)∆ +B1 +B2) ∼Q −(1− a1 + a2

t
)(KX + ∆)

is ample by the assumption t > 768N(ε)/ε. By Connectedness Lemma,
Nklt(X, (1 − a1+a2

t
)∆ + B1 + B2) is connected. Hence there is a non-klt

center W intersecting with F1. Hence we have

multW

((
1− a1 + a2

t

)
∆ +B1 +B2

)
≥ 1.

If dimW = 2, since (X, (1− a1+a2
t

)∆) is ε-klt,

multW

((
1− a1 + a2

t

)
∆
)
< 1− ε.

Hence
multW (B1 +B2) ≥ ε.

Since F1 6⊂ W by the maximality of F1, W is not vertical. Restricting on a
general fiber F of f , we have

2(a1 + a2)

t
= −a1 + a2

t
KX · F = (B1 +B2) · F ≥ εW · F ≥ ε.

Hence

t ≤ 2(a1 + a2)

ε
≤ 1536N(ε)

ε2
.

If dimW = 1, then since P1 is general, we may assume that for each
point Q ∈ F1 ∩ Supp(∆ + B2), Q is not contained in the singular locus
of Supp(∆ + B2). This is because the singular locus of Supp(∆ + B2) has
dimension at most 1 and hence does not dominate S. Now if W ⊂ Supp∆,
then W is contained in exactly one component of ∆ since Supp∆ is smooth
at points in F1 ∩W . Since (X,∆) is ε-klt, the coefficients of ∆ is smaller
than 1− ε. Hence

multW∆ ≤ 1− ε.
Of course this inequality also holds if W 6⊂ Supp∆. So we have

multW (B1 +B2) ≥ ε.

Note that to compute the intersection number (B1 +B2) ·F for some fiber F
by multW (B1+B2), it is necessary to avoid Vf(W ) in B1+B2. Denote Vf(W ) by
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V . By construction of B1, multVB1 ≤ ε/2. On the other hand, multVB2 = 0
since F1 6⊂ SuppB2 but F1 ⊂ V . We can write B1 + B2 = B + λV where
the support of B does not contain V . Then λ ≤ ε/2. It is easy to see that
multWV = 1 and hence

multWB = multW (B1 +B2)− λ ≥ ε

2
.

Restricting on a fiber F of f at a general point of f(W ), we have

2(a1 + a2)

t
= −a1 + a2

t
KX · F = (B1 +B2) · F = B · F ≥ ε

2
.

Hence

t ≤ 4(a1 + a2)

ε
≤ 3072N(ε)

ε2
.

In summary, we have

t ≤ 4(a1 + a2)

ε
≤ 3072N(ε)

ε2
,

and hence

Vol(−KX) ≤ 24 · 30722N(ε)2

ε4
.

We have completed the proof of Theorem 1.1.12.

3.4 Boundedness of log Fano threefolds of fixed

index

In this section, we prove the boundedness of log Fano threefolds of fixed index
(Corollary 1.1.8). Corollary 1.1.8 follows directly by Theorem 1.1.7 and the
following more general theorem which might be well known to experts.

Theorem 3.4.1. Fix positive integers r and n. Assume Weak BAB Conjec-
ture holds in dimension n.

Let D be the set of all normal projective varieties X, where dimX = n,
KX is Q-Cartier, and there exists an effective Q-divisor ∆ such that (X,∆)
is klt and −r(KX + ∆) is Cartier and ample.

Then D forms a bounded family.

Proof. Consider a klt log Fano pair (X,∆) of dimension n such that KX is
Q-Cartier and −r(KX + ∆) is Cartier.

Note that (X,∆) is ε-klt with ε = 1/2r by the assumption. It follows
that (−(KX + ∆))n ≤M(n, ε) by Weak BAB Conjecture in dimension n.
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Since −r(KX + ∆) is Cartier and ample, by Kollár’s Effective Base Point
Free Theorem [Kol93, 1.1 Theorem, 1.2 Lemma], G := −Nr(KX +∆) is very
ample for N = 2n · (n+ 3)!.

Note that (KX + G) · C ≥ 0 for all curves C satisfying KX · C ≥ −2n.
Hence by Cone Theorem (see [KoMo98, Theorem 3.7]), KX +G is nef.

Now we can bound Gn and | − KX · Gn−1| from above. Clearly Gn ≤
NnrnM(n, ε) by definition and −KX · Gn−1 > 0 since −KX is big. On the
other hand,

−KX ·Gn−1

= − (KX +G) ·Gn−1 +G ·Gn−1

≤ NnrnM(n, ε).

Hence Gn and |−KX ·Gn−1| are bounded from above. By [KoMa83], the coef-
ficients of the Hilbert polynomial P (t) = χ(X,O(tG)) is bounded and hence
there are only finitely many Hilbert polynomials for the polarized variety
(X,G). And hence X is in a bounded family.

We complete the proof.
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4
On the anti-canonical geometry

of Q-Fano threefolds

In this chapter, we investigate (weak) Q-Fano 3-folds. We will prove Theo-
rems 1.2.9, 1.2.11, 1.2.13, 1.2.14, and 1.2.15.

This chapter is organized as follows. In Section 4.1, we give an explicit
bound of Gorenstein indices of weak Q-Fano 3-folds. In Section 4.2, we
consider Problem 1.2.8 on Q-Fano 3-folds. We generalize a result of Alexeev
and reduce the problem to the numerical behavior of anti-plurigenera, then
we apply a method developed by J. A. Chen and M. Chen to analyze the
possible weighted baskets. Section 4.3 is devoted to proving Theorem 1.2.14
for weak Q-Fano 3-folds. We reduce the problem to the numerical behavior
of Hilbert polynomials and use Reid’s formula to estimate the lower bound of
Hilbert polynomials. Finally we study the birationality and generic finiteness
in Section 4.4. We give an effective criterion for the birationality (resp.
generic finiteness) of ϕ−m. As applications, we prove Theorems 1.2.11 and
1.2.15.

4.1 Upper bound of Gorenstein indices

The following fact might be known to experts. We will apply it in our
argument.

Proposition 4.1.1. Let X be a weak Q-Fano 3-fold. Then either rX = 840
or rX ≤ 660. 1

1This means that the Gorenstein index of a weak Q-Fano 3-fold is bounded from above
by 840. Among known Q-Fano 3-folds, the maximal Gorenstein index is 420. For example,
so is the general weighted hypersurface X19 ⊂ P(1, 3, 4, 5, 7) (cf. [IF00, List 16.6, No.40]).
We do not know if this bound is optimal.

39



Proof. Write Reid’s basket

BX = {(bi, ri) | i = 1, · · · , s; 0 < bi ≤
ri
2

; bi is coprime to ri}.

Then, by definition, rX = l.c.m.{ri | i = 1, · · · , s}.
By [KMMT00], we know that (−KX ·c2(X)) ≥ 0. Therefore Reid [Reid87,

10.3] gives the inequality ∑
i

(ri −
1

ri
) ≤ 24. (4.1.1)

Now for the sequence R = (ri)i, we define a new set P = {sj}j as
following: if we factor ri by primes such that ri = pa1i1 pa2i2 · · · p

aki
k , then we

take P = {pajij }1≤j≤k,i. Roughly speaking, we split ri by its prime factors. It
is easy to show that if a, b > 1 and coprime, then

ab− 1

ab
≥ a− 1

a
+ b− 1

b
+ 2. (4.1.2)

So ∑
j

(sj −
1

sj
) ≤

∑
i

(ri −
1

ri
) ≤ 24. (4.1.3)

And we also have l.c.m.(sj)j = l.c.m.(ri)i = rX . So the problem is reduced
to treat the sequence (sj)j instead. Clearly, for each i,

si ∈ {2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19}.

Now we may assume that rX > 660.
Denote by s1 the largest value in P , by s2 the second largest value, by

s3, s4 the third, the forth, and so on. For instance, if P = {2, 3, 4, 5}, then
s1 = 5, s2 = 4, s3 = 3, and s4 = 2. If the value sj does not exist by definition,
then we set sj = 1. In the previous example, we have s5 = 1.

Since l.c.m.(2, 3, 4, 5, 7) = 420 and l.c.m.(2, 3, 4, 5, 7, 8) = 840, if s1 ≤ 8,
then 3, 5, 7, 8 ∈ P . In this case P = {3, 5, 7, 8} or {2, 3, 5, 7, 8} by inequality
(4.1.3) and R = (3, 5, 7, 8) or (2, 3, 5, 7, 8) by inequality (4.1.2). In a word,
rX = 840.

If s1 ≥ 16, then ∑
j>1

(sj −
1

sj
) ≤ 8 +

1

16
.
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Then s2 ≤ 8. Also s2 ≥ 5 since, otherwise, l.c.m.(2, 3, 4, s1) ≤ 228 < rX (a
contradiction). Hence ∑

j>2

(sj −
1

sj
) ≤ 3 +

1

16
+

1

5
.

So s3 ≤ 3, but 2 and 3 can not be in P simultaneously. Then l.c.m.(sj)j ≤
3× 8× 19 < rX , a contradiction.

If s1 = 13, then s2 ≥ 5 since, otherwise, l.c.m.(2, 3, 4, s1) = 12s1 < rX (a
contradiction). Then∑

j>2

(sj −
1

sj
) ≤ 11− s2 +

1

13
+

1

s2

.

If s2 = 11, then sj = 1 for any j > 2 and rX = 11 × 13, a contradiction.
If s2 = 9, then s3 ≤ 2 and l.c.m.(sj)j ≤ 2 × 9 × 13 < rX , a contradiction.
If s2 = 8, then s3 ≤ 3, but 2 and 3 can not be in P simultaneously. So
l.c.m.(sj)j ≤ 3 × 8 × 13 < rX , a contradiction. If s2 = 7, then s3 ≤ 4, but
3 and 4 can not be in P simultaneously. So l.c.m.(sj)j ≤ 6 × 7 × 13 < rX ,
a contradiction. If s2 = 5, then 3 and 4 can not be in P simultaneously. So
l.c.m.(sj)j ≤ 6× 5× 13 < rX , a contradiction.

If s1 = 11, then 9 ≥ s2 ≥ 7 since, otherwise, l.c.m.(2, 3, 4, 5, s1) = 60s1 <
rX (a contradiction). Then∑

j>2

(sj −
1

sj
) ≤ 6 +

1

11
+

1

7
.

Hence s3 ≤ 5. If s3 = 5, then sj = 1 for any j > 3 and l.c.m.(sj)j ≤ 5× 9×
11 < rX , a contradiction. If s3 = 4, then s4 ≤ 2 and l.c.m.(sj)j ≤ 4×9×11 <
rX , a contradiction. If s3 ≤ 3, then l.c.m.(sj)j ≤ 2 × 3 × 9 × 11 < rX , a
contradiction.

If s1 = 9, then 8 ≥ s2 ≥ 7 since, otherwise, l.c.m.(2, 3, 4, 5, 9) = 180 < rX
(a contradiction). Consider firstly the case s2 = 8. We have∑

j>2

(sj −
1

sj
) ≤ 7 +

1

9
+

1

8
.

If s3 = 7, then sj = 1 for any j > 3 and l.c.m.(sj)j ≤ 7 × 8 × 9 < rX , a
contradiction. If s3 ≤ 5, then l.c.m.(sj)j ≤ lcm(2, 3, 4, 5, 8, 9) = 360 < rX , a
contradiction. Next we consider the case s2 = 7. Then∑

j>2

(sj −
1

sj
) ≤ 8 +

1

9
+

1

7
.
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If s3 = 5, then s4 ≤ 3 and l.c.m.(sj)j ≤ 2× 5× 7× 9 < rX , a contradiction.
If s3 ≤ 4, then l.c.m.(sj)j ≤ 4× 7× 9 < rX , a contradiction. So we conclude
the statement.

From the proof we also know that rX = 840 only happens when R =
(3, 5, 7, 8) or (2, 3, 5, 7, 8).

4.2 When is | − mKX | not composed with a

pencil (Part I)?

The most important part of this chapter is to find a minimal positive integer
m so that | − mKX | is not composed with a pencil of surfaces. For the
convenience of expression, we fix our notations first.

Definition 4.2.1. Let X be a weak Q-Fano 3-fold. For any 0 ≤ i ≤ 2, define

δi(X) := min{m ∈ Z+ | dimϕ−m(X) > i}.

We will mainly treat Q-Fano 3-folds in this section.

4.2.1 Two key theorems

We prove two theorems here which are crucial in proving Theorem 1.2.9.

Theorem 4.2.2. Let X be a Q-Fano 3-fold with the basket B of singularities.
Fix a positive integer m such that P−m > 0. Assume that, for each pair
(b, r) ∈ B, one of the following conditions is satisfied:

(1) m ≡ 0,±1 mod r;

(2) m ≡ −2 mod r and b = b r
2
c;

(3) m ≡ 2 mod r and 3b ≥ r;

(4) m ≡ 3 mod r and 4b ≥ r;

(5) m ≡ 4 mod r, b(r − b) ≥ 4b(r − 4b), and

b(r − b) + 2b(r − 2b) ≥ 3b(r − 3b) + 4b(r − 4b).

Then one of the following holds:

(I) P−m = 1 and −mKX ∼ E is a fixed prime divisor;
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(II) P−m = 2, | −mKX | does not have fixed part and is composed with an
irreducible rational pencil of surfaces;

(III) P−m ≥ 3, | −mKX | does not have fixed part and is not composed with
a pencil of surfaces.

Proof. We generalize the argument of Alexeev [Ale94b, 2.18] where the case
m = 1 is treated.

Assume that none of the conclusions holds, then there exists a strictly
effective divisor E such that −mKX − E is strictly effective and

h0(−mKX)− h0(−mKX − E)− h0(E) + h0(OX) = 0.

In fact, if P−m = 1 and −mKX ∼ D is not a prime divisor, then we take
E to be one irreducible component of D; if P−m ≥ 2 and | −mKX | has fixed
part, then we take E to be one component in the fixed part; if P−m ≥ 3,
| −mKX | does not have fixed part and is composed with a (rational) pencil
of surfaces, then | −mKX | = |nS| with n ≥ 2 and we can take E = S.

By Kawamata–Viehweg vanishing theorem and ρ(X) = 1, all higher coho-
mologies vanish for OX(−mKX), OX(−mKX −E), OX(E), and OX . Hence

∆∆χ(−mKX ,−mKX − E,E, 0) = 0,

where the double difference of a function f is defined by

∆∆f (a, a− d, b, b− d) = f(a)− f(a− d)− f(b) + f(b− d).

Then we have

∆∆χ,reg(−mKX ,−mKX−E,E, 0)+∆∆χ,sing(−mKX ,−mKX−E,E, 0) = 0.

It is clear to see that

∆∆χ,reg(−mKX ,−mKX − E,E, 0) =
m+ 1

2
(−KX)(−mKX − E)E > 0,

since E and −mKX − E are ample by our construction and ρ(X) = 1. To
get a contradiction, it is sufficient to show that

∆∆χ,sing(−mKX ,−mKX − E,E, 0) ≥ 0

under the assumption of this theorem. Thus it amounts to show that, for
every single point Q = (b, r) ∈ B,

cQ(−mKX)− cQ(−mKX − E)− cQ(E) ≥ 0. (4.2.1)
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Set F (x) := x(r−x)
2r

for any integer x and l := m. We may assume that
the local index of E at Q is i (0 ≤ i < r).

Then

cQ(−mKX)− cQ(−mKX − E)− cQ(E)

=
(
− (2r − l)(r2 − 1)

12r
+

2r−l−1∑
j=0

F (jb)
)

−
(
− (2r − l − i)(r2 − 1)

12r
+

2r−l−i−1∑
j=0

F (jb)
)

−
(
− i(r2 − 1)

12r
+

i−1∑
j=0

F (jb)
)

=
2r−l−1∑
j=0

F (jb)−
2r−l−i−1∑

j=0

F (jb)−
i−1∑
j=0

F (jb)

=
2r−l−1∑
j=2r−l−i

F (jb)−
i−1∑
j=0

F (jb)

=
l+i∑

j=l+1

F (jb)−
i−1∑
j=0

F (jb)

=
l+i∑
j=i

F (jb)−
l∑

j=0

F (jb)

=
l∑

j=0

F (ib+ jb)−
l∑

j=0

F (jb). (4.2.2)

Then to prove inequality (4.2.1), it suffices to prove that

G(x) :=
l∑

j=0

F (x+ jb)−
l∑

j=0

F (jb) ≥ 0

for arbitrary integer x.
Note that G(x) is a periodic piecewisely quadratic function with negative

leading coefficients. Hence the minimal value can only be reached at end
points of each piece. It is easy to see that the set of end points is {nr − jb |
n ∈ Z, j = 0, 1, . . . , l}. Hence G(x) ≥ 0 is equivalent to G(−jb) ≥ 0 for all
j = 0, 1, . . . , l. Note that G(0) = G(−lb) = 0.

If m ≡ 0, 1 mod r, there is nothing to prove.

44



If m ≡ 2 mod r, then G(−b) = F (b) − F (2b). It is easy to see that
F (b)− F (2b) ≥ 0 is equivalent to 3b ≥ r.

If m ≡ 3 mod r, then G(−b) = G(−2b) = F (b)−F (3b). It is easy to see
that F (b)− F (3b) ≥ 0 is equivalent to 4b ≥ r.

If m ≡ 4 mod r, then G(−b) = G(−3b) = F (b) − F (4b) and G(−2b) =
F (b) + F (2b)− F (3b)− F (4b).

If m ≡ −1 mod r, then G(x) =
∑r−1

j=0 F (x+ jb)−
∑r−1

j=0 F (jb) = 0.

If m ≡ −2 mod r, then G(x) =
∑r−2

j=0 F (x+ jb)−
∑r−2

j=0 F (jb) = F (b)−
F (x + (r − 1)b). And F (b) − F (x + (r − 1)b) ≥ 0 for all x if and only if
b = b r

2
c.

So we have proved the theorem.

As a corollary of Theorem 4.2.2, we know the geometry of | −KX | when
P−1 is large due to Alexeev.

Corollary 4.2.3 ([Ale94b, 2.18]). Let X be a Q-Fano 3-fold. If P−1 ≥ 3,
then | −KX | has no fixed part and is not composed with a pencil of surfaces.

Hence we only need to deal with the case when P−1 < 3. For this purpose,
we prove the following theorem.

Theorem 4.2.4. Let X be a Q-Fano 3-fold. Fix a positive integer m. Assume
that one of the following holds:

(i) P−m = 1 and E ∈ | −mKX | is a fixed prime divisor;

(ii) P−m = 2 and | −mKX | does not have fixed part.

Write n0 := min{n ∈ Z+ | P−nm ≥ 2}. For any integer l ≥ n0, write
l = sn0 + t with s ∈ Z and 0 ≤ t ≤ n0 − 1. Take l0 = min{l ∈ Z≥n0 | P−lm >
s + 1}. Then | − l0mKX | does not have fixed part and is not composed with
a pencil of surfaces.

Proof. First we assume that |− l0mKX | has a base component El0 . It follows
that P−m = 1 and El0 = E. Thus, by definition, we have l0 > 1. Hence

P−(l0−1)m = h0(−l0mKX − (−mKX))

= h0(−l0mKX − El0) = h0(−l0mKX) > s+ 1,

which contradicts the minimality of l0. The similar argument implies that
| − n0mKX | does not have fixed part.

Now assume that | − l0mKX | is composed with a (rational) pencil of
surfaces, i.e.

| − l0mKX | = |(P−l0m − 1)S|,
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where |S| is an irreducible rational pencil. Write l0 = sn0 + t. Since P−n0m ≥
2, we have P−sn0m ≥ s+ 1.

If t > 0, by the minimality of l0 we get P−sn0m = s + 1. So we can write
|−sn0mKX | = |sS| by Lemma 2.4.2 since | − n0mKX | does not have fixed
part and | − sn0mKX | � | − l0mKX |. Now

−tmKX ∼ −l0mKX − (−sn0mKX) ∼ (P−l0m − 1)S − sS
= (P−l0m − 1− s)S ≥ S.

This implies that P−tm ≥ 2, which contradicts the minimality of n0. Hence
t = 0 and l0 = sn0.

If s ≥ 2, by the minimality of l0 we get P−(s−1)n0m = s ≥ 2. We can write
|−(s− 1)n0mKX | = |(s− 1)S| by Lemma 2.4.2. Hence

−n0mKX ∼ −l0mKX − (−(s− 1)n0mKX) ∼ (P−l0m − 1)S − (s− 1)S

= (P−l0m − s)S ≥ 2S.

This implies that P−n0m ≥ 3, which contradicts the minimality of l0.
Hence s = 1 and l0 = n0. By P−n0m ≥ 3, we have n0 > 1. This implies,

by assumption, P−m = 1 and −mKX ∼ E is a fixed prime divisor. Since
E ≤ (P−Nm− 1)S ∼ −n0mKX and E is reduced and irreducible, E ≤ S0 for
certain surface S0 ∈ |S|. Hence

−(n0 − 1)mKX ∼ −n0mKX − (−mKX) ∼ (P−n0m − 1)S − E
≥ (P−n0m − 2)S + (S0 − E) ≥ S.

This implies that P−(n0−1)m ≥ 2, which contradicts the minimality of n0. We
are done.

Now let us explain the strategy to prove Theorem 1.2.9. Firstly, we divide
all Q-Fano 3-folds into several families, roughly speaking, by the value of
P−1. Then in each family, we may take a proper m satisfying the condition of
Theorem 4.2.2. Applying Theorem 4.2.4 to m, we are able to find the number
l0 and so δ1(X) ≤ l0m. In order to find such l0, or an upper bound of l0, we
may assume that l0 is sufficiently large, say, l0 ≥ 9, then by the assumption
of Theorem 4.2.4, we know the value of P−m, P−2m, P−3m, . . . , P−8m. Then,
by Chen–Chen’s method ([CC08]) on the analysis of baskets, we can recover
all possibilities for baskets of singularities, of which each possibility can be
proved to be either impossible or very easy to treat. For this purpose, we
need to recall relevant materials on baskets, packings, the canonical sequence
and so on.
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4.2.2 Weighted baskets

All contents of this subsection are mainly from Chen–Chen [CC08, CC10a].
We list them as follows:

1. Let B = {(bi, ri) | i = 1, · · · , s; 0 < bi ≤ ri
2

; bi is coprime to ri} be

a basket. We set σ(B) :=
∑

i bi, σ
′(B) :=

∑
i
b2i
ri

, and ∆n(B) =∑
i(
bin(ri−bin)

2ri
− bin(ri−bin)

2ri
) for any integer n > 1.

2. The new (generalized) basket

B′ := {(b1 + b2, r1 + r2), (b3, r3), · · · , (bs, rs)}

is called a packing of B, denoted as B � B′. Note that {(2, 4)} =
{(1, 2), (1, 2)}. We call B � B′ a prime packing if b1r2 − b2r1 = 1. A
composition of finite packings is also called a packing. So the relation
“�” is a partial ordering on the set of baskets.

3. Note that for a weak Q-Fano 3-fold X, all the anti-plurigenera P−n can
be determined by Reid’s basket BX and P−1(X). This leads to the
notion of “weighted basket”. We call a pair B = (B, P̃−1) a weighted
basket if B is a basket and P̃−1 is a non-negative integer. We write
(B, P̃−1) � (B′, P̃−1) if B � B′.

4. Given a weighted basket B = (B, P̃−1), define P̃−1(B) := P̃−1 and the
volume

−K3(B) := 2P̃−1 + σ(B)− σ′(B)− 6.

For all m ≥ 1, we define the “anti-plurigenus” in the following inductive
way:

P̃−(m+1) − P̃−m

=
1

2
(m+ 1)2(−K3(B) + σ′(B)) + 2− m+ 1

2
σ −∆m+1(B).

Note that, if we set B = (BX , P−1(X)) for a given weak Q-Fano 3-fold
X, then we can verify directly that −K3(B) = −K3

X and P̃−m(B) =
P−m(X) for all m ≥ 1.

Property 4.2.5 ([CC10a, Section 3]). Assume B := (B, P̃−1) � B′ :=
(B′, P̃−1). Then

(i) σ(B) = σ(B′) and σ′(B) ≥ σ′(B′);

(ii) For all integer n ≥ 1, ∆n(B) ≥ ∆n(B′);
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(iii) −K3(B) + σ′(B) = −K3(B′) + σ′(B′);

(iv) −K3(B) ≤ −K3(B′);

(v) P̃−m(B) ≤ P̃−m(B′) for all m ≥ 2.

Next we recall the “canonical” sequence of a basket B. Set S(0) := { 1
n
|

n ≥ 2}, S(5) := S(0) ∪ {2
5
}, and inductively for all n ≥ 5,

S(n) := S(n−1) ∪ { b
n
| 0 < b <

n

2
, b is coprime to n}.

Each set S(n) gives a division of the interval (0, 1
2
] =

⋃
i

[ω
(n)
i+1, ω

(n)
i ] with

ω
(n)
i , ω

(n)
i+1 ∈ S(n). Let ω

(n)
i+1 = qi+1

pi+1
and ω

(n)
i = qi

pi
with g.c.d(ql, pl) = 1 for

l = i, i+ 1. Then it is easy to see that qipi+1 − piqi+1 = 1 for all n and i (cf.
[CC10a, Claim A]).

Now given a basket B = {(bi, ri) | i = 1, · · · , s}, we define new baskets
B(n)(B), where B(n)(·) can be regarded as an operator on the set of baskets.

For each (bi, ri) ∈ B, if bi
ri
∈ S(n), then we set B(n)

i := {(bi, ri)}. If bi
ri
6∈ S(n),

then ω
(n)
l+1 < bi

ri
< ω

(n)
l for some l. We write ω

(n)
l = ql

pl
and ω

(n)
l+1 = ql+1

pl+1

respectively. In this situation, we can unpack (bi, ri) to B(n)
i := {(riql −

bipl)× (ql+1, pl+1), (−riql+1 + bipl+1)× (ql, pl)}. Adding up those B(n)
i , we get

a new basket B(n)(B), which is uniquely defined according to the construction
and B(n)(B) � B for all n. Note that, by our definition, B = B(n)(B) for
sufficiently large n.

Moreover, we have

B(n−1)(B) = B(n−1)(B(n)(B)) � B(n)(B)

for all n ≥ 1 (cf. [CC10a, Claim B]). Therefore we have a chain of baskets

B(0)(B) � B(5)(B) � · · · � B(n)(B) � · · · � B.

The step B(n−1)(B) � B(n)(B) can be achieved by a number of successive
prime packings. Let εn(B) be the number of such prime packings. For any
n > 0, set B(n) := B(n)(B).

The following properties are essential to represent B(n)(B).

Lemma 4.2.6 ([CC10a, Lemma 2.16]). For the above sequence {B(n)(B)},
the following statements hold:

(i) ∆j(B(0)(B)) = ∆j(B) for j = 3, 4;
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(ii) ∆j(B(n−1)(B)) = ∆j(B(n)(B)) for all j < n;

(iii) ∆n(B(n−1)(B)) = ∆n(B(n)(B)) + εn(B).

It follows that ∆j(B(n)(B)) = ∆j(B) for all j ≤ n and

εn(B) = ∆n(B(n−1)(B))−∆n(B(n)(B)) = ∆n(B(n−1)(B))−∆n(B).

Moreover, given a weighted basket B = (B, P̃−1), we can similarly consider
B(n)(B) := (B(n)(B), P̃−1). It follows that

P̃−j(B(n)(B)) = P̃−j(B) for all j ≤ n.

Therefore we can realize the canonical sequence of weighted baskets as an
approximation of weighted baskets via anti-plurigenera.

We now recall the relation between weighted baskets and anti-plurigenera
more closely. For a given weighted basket B = (B, P̃−1), we start by comput-
ing the non-negative number εn and B(0), B(5) in terms of P̃−m. From the
definition of P̃−m we get

σ(B) = 10− 5P̃−1 + P̃−2,

∆m+1 = (2− 5(m+ 1) + 2(m+ 1)2) +
1

2
(m+ 1)(2− 3m)P̃−1

+
1

2
m(m+ 1)P̃−2 + P̃−m − P̃−(m+1).

In particular, we have

∆3 = 5− 6P̃−1 + 4P̃−2 − P̃−3;

∆4 = 14− 14P̃−1 + 6P̃−2 + P̃−3 − P̃−4.

Assume B(0) = {n0
1,r × (1, r) | r ≥ 2}. By Lemma 4.2.6, we have

σ(B) = σ(B(0)) =
∑

n0
1,r;

∆3(B) = ∆3(B(0)) = n0
1,2;

∆4(B) = ∆4(B(0)) = 2n0
1,2 + n0

1,3.

Thus we get B(0) as follows:
n0

1,2 = 5− 6P̃−1 + 4P̃−2 − P̃−3;

n0
1,3 = 4− 2P̃−1 − 2P̃−2 + 3P̃−3 − P̃−4;

n0
1,4 = 1 + 3P̃−1 − P̃−2 − 2P̃−3 + P̃−4 − σ5;

n0
1,r = n0

1,r, r ≥ 5,
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where σ5 :=
∑

r≥5 n
0
1,r. A computation gives

ε5 = 2 + P̃−2 − 2P̃−4 + P̃−5 − σ5.

Therefore we get B(5) as follows:

n5
1,2 = 3− 6P̃−1 + 3P̃−2 − P̃−3 + 2P̃−4 − P̃−5 + σ5;

n5
2,5 = 2 + P̃−2 − 2P̃−4 + P̃−5 − σ5;

n5
1,3 = 2− 2P̃−1 − 3P̃−2 + 3P̃−3 + P̃−4 − P̃−5 + σ5;

n5
1,4 = 1 + 3P̃−1 − P̃−2 − 2P̃−3 + P̃−4 − σ5;

n5
1,r = n0

1,r, r ≥ 5.

Because B(5) = B(6), we see ε6 = 0 and on the other hand

ε6 = 3P̃−1 + P̃−2 − P̃−3 − P̃−4 − P̃−5 + P̃−6 − ε = 0

where ε := 2σ5 − n0
1,5 ≥ 0.

Going on a similar calculation, we get

ε7 = 1 + P̃−1 + P̃−2 − P̃−5 − P̃−6 + P̃−7 − 2σ5 + 2n0
1,5 + n0

1,6;

ε8 = 2P̃−1 + P̃−2 + P̃−3 − P̃−4 − P̃−5 − P̃−7 + P̃−8

− 3σ5 + 3n0
1,5 + 2n0

1,6 + n0
1,7.

A weighted basket B = (B, P̃−1) is said to be geometric if B = (BX , P−1(X))
for a Q-Fano 3-fold X. Geometric baskets are subject to some geomet-
ric properties. By [Kaw92a], we have that (−KX · c2(X)) > 0. Therefore
[Reid87, 10.3] gives the inequality

γ(B) :=
∑
i

1

ri
−
∑
i

ri + 24 > 0. (4.2.3)

For packings, it is easy to see the following lemma.

Lemma 4.2.7. Given a packing of baskets B1 � B2, we have γ(B1) ≥ γ(B2).
In particular, if inequality (4.2.3) does not hold for B1, then it does not hold
for B2.

Lemma 4.2.7 implies that, for two weighted baskets B1 � B2, if B1 is
non-geometric, then neither is B2.

Furthermore, −K3(B) = −K3
X > 0 gives the inequality

σ′(B) < 2P−1 + σ(B)− 6. (4.2.4)

Finally, by [Kol95, Lemma 15.6.2], if P−m > 0 and P−n > 0, then

P−m−n ≥ P−m + P−n − 1. (4.2.5)
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4.2.3 Q-Fano 3-folds with h0(−K) = 2

In this subsection we prove the following theorem.

Theorem 4.2.8. Let X be a Q-Fano 3-fold with P−1 = 2. Then for any
integer m ≥ 6, dimϕ−m(X) > 1. In particular, δ1(X) ≤ 6.

Theorem 4.2.8 is optimal due to the following example.

Example 4.2.9 ([IF00, List 16.6, No.88]). Consider the general weighted
hypersurface X42 ⊂ P(12, 6, 14, 21), which is a Q-Fano 3-fold with P−1 = 2.
Then dimϕ−6(X42) > 1 while dimϕ−5(X42) = 1. So δ1(X42) = 6.

Proof of Theorem 4.2.8. Since P−1 > 0, it is sufficient to prove that there
exists an integer m ≤ 6 such that dimϕ−m(X) > 1.

Assume, to the contrary, that δ1(X) > 6. Then, by applying Theorems
4.2.2 and 4.2.4 to the case m = 1, we have

P−1 = 2, P−2 = 3, P−3 = 4, P−4 = 5, P−5 = 6, P−6 = 7.

Now by those formulae in Subsection 4.2.2, we have n0
1,2 = 1, n0

1,3 = 1, n0
1,4 =

ε5 = 1− σ5, and 0 = ε6 = 1− ε. Hence ε = 1, and this implies σ5 = n0
1,5 = 1.

Hence the basket B(5) = B(0) = {(1, 2), (1, 3), (1, 5)} by ε5 = 0. Since B(5)

admits no prime packings, B = B(5) and −K3
X = −K3(B(X)) = −1/30 < 0,

a contradiction.

4.2.4 Q-Fano 3-folds with h0(−K) = 1

We are going to prove the following theorem.

Theorem 4.2.10. Let X be a Q-Fano 3-fold with P−1 = 1. Then, for any
integer m ≥ 9, dimϕ−m(X) > 1. In particular, δ1(X) ≤ 9.

This result is optimal as well due to the following example.

Example 4.2.11 ([IF00, List 16.7, No.85]). Consider the general codimen-
sion 2 weighted complete intersection X = X24,30 ⊂ P(1, 8, 9, 10, 12, 15) which

is a Q-Fano 3-fold with P−1 = 1. Then dimϕ−9(X) > 1 and dimϕ−8(X) = 1
since P−8 = 2. So δ1(X) = 9.

Proof of Theorem 4.2.10. Since P−1 > 0, it is sufficient to prove that there
exists an integer m ≤ 9 such that dimϕ−m(X) > 1. Assume, to the contrary,
that δ1(X) > l for some integer l ≤ 9. We will deduce a contradiction.
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Applying Theorems 4.2.2 and 4.2.4 to the case m = 1, we distinguish the
number n0 (defined in Theorem 4.2.4). By Chen–Chen [CC08, Theorem 1.1],
we have n0 ≤ 8.

If n0 = 2 and set l = 6, then Theorem 4.2.4(i)(m = 1) implies that

P−1 = 1, P−2 = P−3 = 2, P−4 = P−5 = 3, P−6 = 4.

Then n0
1,2 = 5, n0

1,3 = 1, n0
1,4 = ε5 = 1 − σ5, 0 = ε6 = 1 − ε. Hence ε = 1,

and this implies σ5 = n0
1,5 = 1. Hence the basket B(5) = B(0) = {5 ×

(1, 2), (1, 3), (1, 5)} by ε5 = 0. Since B(5) admits no further prime packings,
B = B(5) and −K3(B) = − 1

30
< 0, a contradiction. Thus δ1(X) ≤ 6.

If n0 = 3 and set l = 6, then Theorem 4.2.4(i)(m = 1) implies that

P−1 = P−2 = 1, P−3 = P−4 = P−5 = 2, P−6 = 3.

Then n0
1,2 = 1, n0

1,3 = 4, n0
1,4 = ε5 = 1 − σ5, 0 = ε6 = 1 − ε. Hence ε = 1,

and this implies σ5 = n0
1,5 = 1. Hence the basket B(5) = B(0) = {(1, 2), 4 ×

(1, 3), (1, 5)} by ε5 = 0. Since B(5) admits no further prime packings, B =
B(5) and −K3(B) = − 1

30
< 0, a contradiction. Thus δ1(X) ≤ 6.

If n0 = 4 and set l = 6, then Theorem 4.2.4(i)(m = 1) implies that

P−1 = P−2 = P−3 = 1, P−4 = P−5 = P−6 = 2.

Then n0
1,2 = 2, n0

1,3 = 1, n0
1,4 = 3 − σ5, ε5 = 1 − σ5, 0 = ε6 = 1 − ε. Hence

ε = 1, and this implies σ5 = n0
1,5 = 1. Hence B(5) = {2 × (1, 2), (1, 3), 2 ×

(1, 4), (1, 5)} by ε5 = 0. Hence ε7 ≤ 1 and ε8 = 0 by considering possible
prime packings of B(5). On the other hand, ε7 = P−7−1 and ε8 = P−8−P−7.
So P−8 = ε7 + 1 ≤ 2. But this contradicts P−4 = 2 and inequality (4.2.5). So
δ1(X) ≤ 6.

If n0 = 5 and set l = 7, then Theorem 4.2.4(i)(m = 1) implies that

P−1 = P−2 = P−3 = P−4 = 1, P−5 = P−6 = P−7 = 2.

Then n0
1,2 = 2, n0

1,3 = 2, n0
1,4 = 2 − σ5, ε5 = 3 − σ5, 0 = ε6 = 2 − ε,

ε7 = 1 − 2σ5 + 2n0
1,5 + n0

1,6. Hence ε = 2, and this implies (σ5, n
0
1,5) = (1, 0)

or (2, 2). If (σ5, n
0
1,5) = (1, 0), then n0

1,6 = 1 by ε7 ≥ 0. Hence ε5 = 2 and

B(5) = {2×(2, 5), (1, 4), (1, 6)}. Since B(5) admits no further prime packings,
B = B(5) and −K3(B) = − 1

60
< 0, a contradiction. If (σ5, n

0
1,5) = (2, 2), then

ε5 = 1, ε7 = 1, and B(7) = {(3, 7), (1, 3), 2 × (1, 5)}. Since B(7) admits no
further prime packings, B = B(7) and −K3(B) = − 2

105
< 0, a contradiction.

So δ1(X) ≤ 7.
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If n0 = 6 and set l = 8, then Theorem 4.2.4(i)(m = 1) implies that

P−1 = P−2 = P−3 = P−4 = P−5 = 1, P−6 = P−7 = P−8 = 2.

Then n0
1,2 = 2, n0

1,3 = 2, n0
1,4 = 2 − σ5, ε5 = 2 − σ5, 0 = ε6 = 3 − ε. Hence

ε = 3 and σ5 ≤ 2, and this implies (σ5, n
0
1,5) = (2, 1). Then ε5 = 0 and

B(5) = {2 × (1, 2), 2 × (1, 3), (1, 5), (1, s′)} for some s′ ≥ 6. This implies
ε7 = ε8 = 0 since there are no further packings. On the other hand, ε7 =
2− 2σ5 + 2n0

1,5 + n0
1,6 and ε8 = 2− 3σ5 + 3n0

1,5 + 2n0
1,6 + n0

1,7. Hence n0
1,6 = 0,

n0
1,7 = 1, and B(7) = {2×(1, 2), 2×(1, 3), (1, 5), (1, 7)}. Since B(7) is minimal,

B = B(7) and −K3(B) = − 1
105

< 0, a contradiction. Thus δ1(X) ≤ 8.
If n0 ≥ 7 and set l = 9, then Theorem 4.2.4(i)(m = 1) implies that

P−1 = P−2 = P−3 = P−4 = P−5 = P−6 = 1, P−8 = P−9 = 2.

Then n0
1,2 = 2, n0

1,3 = 2, n0
1,4 = 2−σ5, ε5 = 2−σ5, 0 = ε6 = 2−ε. Hence ε = 2

and σ5 ≤ 2, and this implies (σ5, n
0
1,5) = (1, 0) or (2, 2). If (σ5, n

0
1,5) = (2, 2),

then B(5) = {2× (1, 2), 2× (1, 3), 2× (1, 5)} by ε5 = 0. Since B(5) admits no
further prime packings, B = B(5) and −K3(B) < 0, a contradiction.

Thus we are left to consider the case: (σ5, n
0
1,5) = (1, 0). Then we have

B(5) = {(1, 2), (2, 5), (1, 3), (1, 4), (1, s′)} with s′ ≥ 6 by ε5 = 1. Assume that
s′ = 6, 7. Clearly any basket B, with such a given B(5) dominates one of the
following minimal ones:

B1 = {(3, 7), (2, 7), (1, s′)};
B2 = {(1, 2), (3, 8), (1, 4), (1, s′)}.

Since σ′(B) ≥ σ′(Bi) ≥ 2 where s′ = 6, 7 and i = 1, 2, inequality (4.2.4) fails
for all B, which says that this case does not happen. Hence s′ ≥ 8, then the
expression of ε8 gives

P−8 − P−7 = ε8 + 1.

Hence P−7 = P−6 = 1 and ε7 = ε8 = 0 since P−8 = 2. We have B(8) = B(5) =
{(1, 2), (2, 5), (1, 3), (1, 4), (1, s′)} with s′ ≥ 8. Since B(8) admits no further
prime packings, B = B(8). By inequalities (4.2.3) and (4.2.4), s′ can only be
9, 10, 11. But then direct calculations show that P−9 = 3 in all these three
cases, a contradiction. We have proved δ1(X) ≤ 9.

So we conclude the theorem.

4.2.5 Q-Fano 3-folds with h0(−K) = 0

In this subsection we prove the following theorem.
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Theorem 4.2.12. Let X be a Q-Fano 3-fold with P−1 = 0. Then there exists

an integer m1 ≤ 11 such that dimϕ−m1(X) > 1. Moreover, we can take such
a number m1 ≤ 8 except for the following baskets of singularities:

No.1. {2× (1, 2), 3× (2, 5), (1, 3), (1, 4)};
No.2. {5× (1, 2), 2× (1, 3), (2, 7), (1, 4)};
No.3. {5× (1, 2), 2× (1, 3), (3, 11)};
No.4. {5× (1, 2), (1, 3), (3, 10), (1, 4)};
No.A. {7× (1, 2), (3, 7), (1, 5)};
No.B. {6× (1, 2), (4, 9), (1, 5)};
No.C. {5× (1, 2), (5, 11), (1, 5)};
No.D. {4× (1, 2), (6, 13), (1, 5)};
No.E. {7× (1, 2), (3, 8), (1, 5)};
No.F. {5× (1, 2), (4, 9), (1, 3), (1, 5)}.

Remark 4.2.13. We do not know if this result is optimal since very few ex-
amples with P−1 = 0 are known. There are 4 known examples due to Iano-
Fletcher [IF00, List 16.7, No.60] and Altinok–Reid [AR], [Reid00, Example
9.14]. For these examples we can see that dimϕ−8(X) > 1 by our theorem.
Moreover, in next subsection we will treat the exceptional cases. If one can
confirm either the existence or non-existence of type No.1–No.4, the result
becomes optimal and so does Theorem 1.2.9.

Before proving Theorem 4.2.12, we recall a result by J. A. Chen and M.
Chen.

Proposition 4.2.14 ([CC08, Theorem 3.5]). Any geometric basket of weak
Q-Fano 3-folds with P−1 = P−2 = 0 is among the following list:

B −K3 P−3 P−4 P−5 P−6 P−7 P−8

No.1. {2× (1, 2), 3× (2, 5), (1, 3), (1, 4)} 1/60 0 0 1 1 1 2
No.2. {5× (1, 2), 2× (1, 3), (2, 7), (1, 4)} 1/84 0 1 0 1 1 2
No.3. {5× (1, 2), 2× (1, 3), (3, 11)} 1/66 0 1 0 1 1 2
No.4. {5× (1, 2), (1, 3), (3, 10), (1, 4)} 1/60 0 1 0 1 1 2
No.5. {5× (1, 2), (1, 3), 2× (2, 7)} 1/42 0 1 0 1 2 3
No.6. {4× (1, 2), (2, 5), 2× (1, 3), 2× (1, 4)} 1/30 0 1 1 2 2 4
No.7. {3× (1, 2), (2, 5), 5× (1, 3)} 1/30 1 1 1 3 3 4
No.8. {2× (1, 2), (3, 7), 5× (1, 3)} 1/21 1 1 1 3 4 5
No.9. {(1, 2), (4, 9), 5× (1, 3)} 1/18 1 1 1 3 4 5
No.10. {3× (1, 2), (3, 8), 4× (1, 3)} 1/24 1 1 1 3 3 5
No.11. {3× (1, 2), (4, 11), 3× (1, 3)} 1/22 1 1 1 3 3 5
No.12. {3× (1, 2), (5, 14), 2× (1, 3)} 1/21 1 1 1 3 3 5
No.13. {2× (1, 2), 2× (2, 5), 4× (1, 3)} 1/15 1 1 2 4 5 7
No.14. {(1, 2), (3, 7), (2, 5), 4× (1, 3)} 17/210 1 1 2 4 6 8
No.15. {2× (1, 2), (2, 5), (3, 8), 3× (1, 3)} 3/40 1 1 2 4 5 8
No.16. {2× (1, 2), (5, 13), 3× (1, 3)} 1/13 1 1 2 4 5 8
No.17. {(1, 2), 3× (2, 5), 3× (1, 3)} 1/10 1 1 3 5 7 10
No.18. {4× (1, 2), 5× (1, 3), (1, 4)} 1/12 1 2 2 5 6 9
No.19. {4× (1, 2), 4× (1, 3), (2, 7)} 2/21 1 2 2 5 7 10
No.20. {4× (1, 2), 3× (1, 3), (3, 10)} 1/10 1 2 2 5 7 10
No.21. {3× (1, 2), (2, 5), 4× (1, 3), (1, 4)} 7/60 1 2 3 6 8 12
No.22. {3× (1, 2), 7× (1, 3)} 1/6 2 3 4 9 12 17
No.23. {2× (1, 2), (2, 5), 6× (1, 3)} 1/5 2 3 5 10 14 20

Proof of Theorem 4.2.12. In the proof, we will always take a suitable integer
m satisfying one of the conditions in Theorem 4.2.2. If necessary, we apply
Theorem 4.2.4 on m and take m1 = l0m.
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Case I. P−2 = 0.
The basket B = BX of the singularities of X is among the list of Propo-

sition 4.2.14. We just discuss it case by case.
If B is of type No.1, take m = 5. Since P−5 = 1 and P−10 = 4, we can

take m1 = 10.
If B is of type No.2, take m = 11. Since P−11 = 4, we can take m1 = 11.
If B is of type No.3, take m = 10. Since P−10 = 3, we can take m1 = 10.
If B is of type No.4, take m = 11. Since P−11 = 4, we can take m1 = 11.
If B is of type No.5, take m = 8. Since P−8 = 3, we can take m1 = 8.
If B is of type No.6, take m = 8. Since P−8 = 4, we can take m1 = 8.
If B is of type No.7-No.21, take m = 3. Since P−3 = 1 and P−6 ≥ 3, we

can take m1 = 6.
If B is of type No.22-No.23, take m = 3. Since P−3 = 2 and P−6 ≥ 9, we

can take m1 = 6.

Case II. P−2 > 0.
Since P−1 = 0, the basket B(0) has datum

n0
1,2 = 5 + 4P−2 − P−3;

n0
1,3 = 4− 2P−2 + 3P−3 − P−4;

n0
1,4 = 1− P−2 − 2P−3 + P−4 − σ5.

By Lemma 4.2.7, B(0) satisfies inequality (4.2.3) and thus

0 < γ(B(0)) =
∑
r≥2

(
1

r
− r)n0

1,r + 24

≤
∑
r=2,3,4

(
1

r
− r)n0

1,r −
24

5
σ5 + 24

=
25

12
+

37

12
P−2 + P−3 −

13

12
P−4 −

21

20
σ5.

Hence, by n0
1,3 ≥ 0 and n0

1,4 ≥ 0, we have
25

12
+

37

12
P−2 + P−3 −

13

12
P−4 −

21

20
σ5 > 0; (4.2.6)

4− 2P−2 + 3P−3 − P−4 ≥ 0; (4.2.7)

1− P−2 − 2P−3 + P−4 − σ5 ≥ 0. (4.2.8)

Considering the inequality “(4.2.6)+(4.2.7)+2×(4.2.8)”:

97

12
− 11

12
P−2 −

1

12
P−4 −
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20
σ5 > 0, (4.2.9)
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we obtain σ5 ≤ 2.

Subcase II-1. σ5 = 0.
At first, we consider the case P−3 = 0. By inequality (4.2.7), we have

2P−2 + P−4 ≤ 4. Since 1 ≤ P−2 ≤ P−4, it follows that (P−2, P−4) = (1, 1)
or (1, 2). If (P−2, P−4) = (1, 1), then B(0) = {9 × (1, 2), (1, 3), (1, 4)} with
−K3(B(0)) = − 1

12
< 0. Considering a minimal basket Bmin dominated by

B(0), then either Bmin = {(10, 21), (1, 4)} with −K3(Bmin) = − 1
84
< 0 or

Bmin = {9 × (1, 2), (2, 7)} with −K3(Bmin) = − 1
14
< 0. Thus −K3(B) ≤

−K3(Bmin) < 0, a contradiction. If (P−2, P−4) = (1, 2), then B(0) = {9 ×
(1, 2), 2 × (1, 4)}. Since B(0) admits no prime packings anymore, B = B(0)

and −K3(B) = 0, a contradiction.
Let us consider the case P−3 ≥ 1. Since σ5 = 0, B(0) is composed of

(1, 2), (1, 3), (1, 4). In particular, 4b ≥ r holds for every pair (b, r) ∈ B(0).
As an easy conclusion, after packings, 4b ≥ r holds for every pair (b, r) ∈ B.
So m = 3 satisfies the condition of Theorem 4.2.2. By Theorem 4.2.4, we
can take m1 = 3 or 6 unless (P−3, P−6) = (1, 1), (1, 2), (2, 3). By inequality
(4.2.8),

P−4 ≥ 2P−3 + P−2 − 1 ≥ 2P−3. (4.2.10)

By P−2 > 0, P−6 ≥ P−4. Thus we only need to consider the case (P−3, P−6) =
(1, 2). By inequality (4.2.10), P−2 = 1 and P−4 = 2. On the other hand,

0 = ε6 = 3P−1 + P−2 − P−3 − P−4 − P−5 + P−6 − ε = −P−5.

This implies P−5 = 0 which contradicts P−2 = P−3 = 1.

Subcase II-2. σ5 = 2.
By inequality (4.2.9) and P−4 ≥ 2P−2 − 1, we have P−2 ≤ 1. Hence

P−2 = 1 and, by inequalities (4.2.6)-(4.2.8), we have inequalities:
46

15
+ P−3 −

13

12
P−4 > 0; (4.2.11)

2 + 3P−3 − P−4 ≥ 0; (4.2.12)

−2− 2P−3 + P−4 ≥ 0. (4.2.13)

Considering the inequality “2× (4.2.11) + (4.2.13)”, we have P−4 ≤ 3. Hence
P−3 = 0 by inequality (4.2.13), and P−4 = 2 by inequalities (4.2.12) and
(4.2.13). Then B(0) = {9× (1, 2), (1, s1), (1, s2)} with 5 ≤ s1 ≤ s2. If s2 > 5,
then γ(B(0)) ≤ 9× (1

2
−2) + (1

5
−5) + (1

6
−6) + 24 < 0, a contradiction. Thus

B(0) = {9 × (1, 2), 2 × (1, 5)}. Since B(0) admits no further prime packings,
B = B(0). Take m = 5. Since P−5 = 3 by ε5 = 0, we can take m1 = 5 by
Theorem 4.2.4.
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Subcase II-3. σ5 = 1.
By inequalities (4.2.6)-(4.2.8), we have

12 + 37P−2 + 12P−3 − 13P−4 ≥ 0; (4.2.14)

4− 2P−2 + 3P−3 − P−4 ≥ 0; (4.2.15)

−P−2 − 2P−3 + P−4 ≥ 0. (4.2.16)

Considering the inequality “(4.2.14) + 13× (4.2.16)”, we have

7P−3 ≤ 12P−2 + 6. (4.2.17)

Considering the inequality “(4.2.15) + (4.2.16)”, we have

3P−2 ≤ P−3 + 4. (4.2.18)

Inequalities (4.2.17) and (4.2.18) imply P−2 ≤ 3.

Subsubcase II-3-i. (σ5, P−2) = (1, 3).
By inequalities (4.2.17) and (4.2.18), 5 ≤ P−3 ≤ 6.
If P−3 = 6, by inequalities (4.2.14) and (4.2.16), P−4 = 15. Then B(0) =

{11 × (1, 2), (1, 3), (1, s)} for some integer s ≥ 5. By γ(B(0)) > 0, we have
s = 5. Since the one-step packing B1 = {10×(1, 2), (2, 5), (1, 5)} has negative
γ(B1), B = B(0) = {11 × (1, 2), (1, 3), (1, 5)}. Take m = 4. Since P−4 = 15,
we can take m1 = 4 by Theorem 4.2.4.

If P−3 = 5, by inequalities (4.2.15) and (4.2.16), P−4 = 13. Then B(0) =
{12× (1, 2), (1, s)} for some integer s ≥ 5. By γ(B(0)) > 0, we have s = 5, 6.
Clearly B = B(0). Take m = 5. Since P−5 = 22, we can take m1 = 5 by
Theorem 4.2.4.

Subsubcase II-3-ii. (σ5, P−2) = (1, 2).
By inequalities (4.2.17) and (4.2.18), 2 ≤ P−3 ≤ 4.
If P−3 = 4, by inequalities (4.2.14) and (4.2.16), P−4 = 10. Then B(0) =

{9× (1, 2), 2× (1, 3), (1, s)} for some integer s ≥ 5. By γ(B(0)) > 0, we have
s = 5. Since the one-step packing B1 = {8 × (1, 2), (2, 5), (1, 3), (1, 5)} has
negative γ(B1), B = B(0) = {9× (1, 2), 2× (1, 3), (1, 5)}. Take m = 4. Since
P−4 = 10, we can take m1 = 4 by Theorem 4.2.4.

If P−3 = 3, by inequalities (4.2.15) and (4.2.16), 8 ≤ P−4 ≤ 9. Firstly
let us consider the case P−4 = 9. Clearly B(0) = {10 × (1, 2), (1, 4), (1, s)}
for some integer s ≥ 5. By γ(B(0)) > 0, we have s = 5. If B = B(0), we
may take m = 4. Since P−4 ≥ 9, we can take m1 = 4 by Theorem 4.2.4. If
B 6= B(0), we have B = {10 × (1, 2), (2, 9)}. Take m = 8. Since P−8 ≥ 3,
we can take m1 = 8 by Theorem 4.2.4. Now we consider the case P−4 = 8.
We have B(0) = {10 × (1, 2), (1, 3), (1, s)} for some integer s ≥ 5. Since
γ(B(0)) > 0, we have 5 ≤ s ≤ 6. For the case (P−4, s) = (8, 6), we get
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B = {10× (1, 2), (1, 3), (1, 6)} since any possible packing of B(0) has negative
γ. Take m = 5. Since P−5 = 13, we can take m1 = 5 by Theorem 4.2.4.
For the case (P−4, s) = (8, 5), we get either B = {10× (1, 2), (1, 3), (1, 5)} or
B = {9× (1, 2), (2, 5), (1, 5)} or B = {8× (1, 2), (3, 7), (1, 5)} by γ > 0. For
all these cases, take m = 6. Since P−6 ≥ 3, we can take m1 = 6 by Theorem
4.2.4.

If P−3 = 2, we have P−4 = 6 by inequalities (4.2.15) and (4.2.16). Then
B(0) = {11 × (1, 2), (1, s)} for some integer s ≥ 5. Similarly, γ(B(0)) > 0
implies 5 ≤ s ≤ 7. Since B(0) admits no further prime packings, B = B(0).
Take m = 6. Since P−6 ≥ 3, we can take m1 = 6 by Theorem 4.2.4.

Subsubcase II-3-iii. (σ5, P−2) = (1, 1).
By inequality (4.2.17), P−3 ≤ 2.
If P−3 = 2, we have P−4 = 5 by inequalities (4.2.14) and (4.2.16). Then

B(0) = {7×(1, 2), 3×(1, 3), (1, s)} for some integer s ≥ 5. Similarly, γ(B(0)) >
0 implies s = 5. Furthermore, we have either B = {7×(1, 2), 3×(1, 3), (1, 5)}
or B = {6 × (1, 2), (2, 5), 2 × (1, 3), (1, 5)} by γ > 0. Take m = 4. Since
P−4 = 5, we can take m1 = 4 by Theorem 4.2.4.

If P−3 = 1, we have 3 ≤ P−4 ≤ 4 by inequalities (4.2.14) and (4.2.16).
Consider the case (P−3, P−4) = (1, 4). We haveB(0) = {8×(1, 2), (1, 3), (1, 4), (1, s)}
for some integer s ≥ 5. Again we have s = 5 since γ(B(0)) > 0. With the
property γ > 0 and considering all possible baskets with B(0), we see that B
must be one of the following baskets:

B1 = {8× (1, 2), (1, 3), (1, 4), (1, 5)},
B2 = {8× (1, 2), (2, 7), (1, 5)},
B3 = {8× (1, 2), (1, 3), (2, 9)},
B4 = {7× (1, 2), (2, 5), (1, 4), (1, 5)}.

For B2, take m = 6. Since P−6(B2) ≥ 3, we can take m1 = 6 by Theorem
4.2.4. For B3, take m = 8. Since P−8(B3) ≥ 3, we can take m1 = 8 by
Theorem 4.2.4. For B1 and B4, take m = 4. Similarly we can take m1 = 4
by Theorem 4.2.4. Consider the case (P−3, P−4) = (1, 3). We have B(0) =
{8 × (1, 2), 2 × (1, 3), (1, s)} for some integer s ≥ 5. Similarly, γ(B(0)) > 0
implies 5 ≤ s ≤ 6. If s = 6, we see either B = {8 × (1, 2), 2 × (1, 3), (1, 6)}
or B = {7 × (1, 2), (2, 5), (1, 3), (1, 6)} since γ(B) > 0. Take m = 5. Since
P−5 ≥ 3, we can take m1 = 5 by Theorem 4.2.4. If s = 5, by considering all
possible packings dominated by B(0) and using the property γ > 0, we see
that B must be one of the following baskets:

Bi = {8× (1, 2), 2× (1, 3), (1, 5)},
Bii = {7× (1, 2), (2, 5), (1, 3), (1, 5)},
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Biii = {6× (1, 2), 2× (2, 5), (1, 5)},
Biv = {6× (1, 2), (3, 7), (1, 3), (1, 5)},
Bv = {5× (1, 2), (4, 9), (1, 3), (1, 5)},
Bvi = {7× (1, 2), (3, 8), (1, 5)},
Bvii = {5× (1, 2), (3, 7), (2, 5), (1, 5)}.

For Bv (corresponding to No.F) and Bvi (corresponding to No.E), takem = 9.
Since P−9 ≥ 3, we can take m1 = 9 by Theorem 4.2.4. For other cases, take
m = 6. Since P−6 ≥ 3, we can take m1 = 6 by Theorem 4.2.4.

If P−3 = 0, by inequality (4.2.15), P−4 ≤ 2. Consider the case (P−3, P−4) =
(0, 2). We have B(0) = {9 × (1, 2), (1, 4), (1, s)} for some integer s ≥ 5. In
fact, 5 ≤ s ≤ 6 by γ(B(0)) > 0. When s = 6, B = B(0) since B(0) admits
no further packings. Take m = 7. Since P−7 = 6, we can take m1 = 7 by
Theorem 4.2.4. When s = 5, the property γ > 0 implies that B(0) admits at
most one further packings. Thus either B = {9 × (1, 2), (1, 4), (1, 5)} (take
m = 4) or B = {9× (1, 2), (2, 9)} (take m = 8). For the first basket, P−4 = 2
and P−8 = 7, we can take m1 = 8 by Theorem 4.2.4. For the second basket,
P−8 = 7 and we can take m1 = 8 by Theorem 4.2.4.

Finally we consider the case (P−3, P−4) = (0, 1). We have B(0) = {9 ×
(1, 2), (1, 3), (1, s)} for some integer s ≥ 5. Similarly, γ(B(0)) > 0 implies
5 ≤ s ≤ 7. When s = 7, the property γ > 0 implies that either B =
{9× (1, 2), (1, 3), (1, 7)} or B = {8× (1, 2), (2, 5), (1, 7)}. Take m = 8. Since
P−8 ≥ 3, we can take m1 = 8 by Theorem 4.2.4. When s = 6, the inequalities
γ > 0 and −K3 > 0 imply that B must be one of the following baskets:

{8× (1, 2), (2, 5), (1, 6)},
{7× (1, 2), (3, 7), (1, 6)},
{6× (1, 2), (4, 9), (1, 6)}.

Take m = 7. Since P−7 ≥ 3, we can take m1 = 7 by Theorem 4.2.4. When
s = 5, inequalities γ > 0 and −K3 > 0 imply that B is among one of the
following baskets:

Ba = {7× (1, 2), (3, 7), (1, 5)},
Bb = {6× (1, 2), (4, 9), (1, 5)},
Bc = {5× (1, 2), (5, 11), (1, 5)},
Bd = {4× (1, 2), (6, 13), (1, 5)}.

For Bd (corresponding to No.D), take m = 11. Since P−11 ≥ 3, we can take
m1 = 11 by Theorem 4.2.4. For other baskets (corresponding to No.A, No.B,
No.C), take m = 9. Since P−9 ≥ 3, we can take m1 = 9 by Theorem 4.2.4.
So the theorem is proved.
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4.2.6 Exceptional cases

In this subsection, we treat the exceptional cases in Theorem 4.2.12.

Theorem 4.2.15. Let X be a Q-Fano 3-fold with basket of singularities B.

(i) If B is of type No.1-No.4 as in Theorem 4.2.12, then dimϕ−10(X) > 1.

(ii) If B is of type No.A-No.D as in Theorem 4.2.12, then dimϕ−8(X) > 1.

(iii) If B is of type No.E-No.F as in Theorem 4.2.12, then dimϕ−4(X) > 1.

Proof. (i). Recall the proof in Case I of Theorem 4.2.12. We may only
consider the two cases with No.2 and No.4. Since P−9 = 2, δ1(X) ≥ 10. We
want to show that δ1(X) = 10 in both cases. In fact, we have P−4 = P−6 = 1,
P−8 = 2, P−10 ≥ 3. Note that the conditions of Theorem 4.2.2 are all satisfied
with m = 4. It follows that −4KX ∼ E is a prime divisor. Assume that
dimϕ−10(X) = 1, then we can write | − 10KX | = |nS| + E ′ with n ≥ 2,
|S| is an irreducible rational pencil of surfaces, and E ′ is the fixed part. By
P−6 > 0, we have E ≤ |nS| + E ′. Since E is reduced and irreducible, either
E ≤ |S| or E ≤ E ′ holds. Then

P−6 = h0(−10KX − E) = h0(nS + E ′ − E) ≥ h0(S) = 2,

a contradiction.
(ii). Recall the last part of Subsubcase II-3-iii in the proof of Theorem

4.2.12. If B is of type No.A–No.D, we have P−2 = P−4 = 1, P−6 = 2, and
P−8 = 3. Assume, to the contrary, that dimϕ−8(X) = 1.

Write −2KX ∼ D for some effective Weil divisor. By Theorem 4.2.4(i)
(with m = 2), D must be either reducible or non-reduced. As in the proof of
Theorem 4.2.2, take E to be any strictly effective divisor such that E < D.
Then inequality (4.2.1) must fail for some singularity Q in Ba–Bd. Clearly,
such an offending singularityQmust be “(1, 5)”. By equality (4.2.2), the local
index iQ(E) of E should be 4 since inequality (4.2.1) holds for i ∈ {0, 1, 2, 3}
and (b, r) = (1, 5), that is, E ∼ −KX at Q. Since E is arbitrary such that
0 < E < D and iQ(−2KX) = 3, we conclude that D = E1 + E2 where Ei is
fixed prime divisor with iQ(Ei) = 4 for i = 1, 2.

If E1 = E2, then 2(−KX − E1) ∼ 0. By [Pro10, Proposition 2.9] and
−KX − E1 is Cartier at Q, we conclude that −KX − E1 is not 2-torsion.
Hence −KX − E1 ∼ 0, which contradicts P−1 = 0. Thus E1 and E2 are
different prime divisors.

Since | − 6KX | � | − 8KX |, by Lemma 2.4.2 we can write

| − 6KX | = |S|+ a6E1 + b6E2,
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| − 8KX | = |2S|+ a8E1 + b8E2,

where |S| is an irreducible rational pencil of surfaces, aiE1 + biE2 is the fixed
part, ai, bi ∈ N for i = 6, 8.

Claim 6. a6b6 = a8b8 = 0.

Proof. Assume that a6, b6 ≥ 1, then

P−4 = h0(−6KX − E1 − E2) ≥ h0(S) = 2,

a contradiction. Similarly, we have a8b8 = 0.

We may assume that b6 = 0. Then

3E1 + 3E2 ∈ |S + a6E1| = |S|+ a6E1. (4.2.19)

It follows that a6 ≤ 3.

Case ii.1. b8 = 0.
In this case

2S + a8E1 ∼ −8KX ∼ −6KX + E1 + E2 ∼ S + (a6 + 1)E1 + E2.

Since a8E1 is the fixed part of |2S + a8E1|, a8 ≤ a6 + 1. Then

S ∼ (a6 + 1− a8)E1 + E2. (4.2.20)

Considering relations (4.2.19) and (4.2.20),

(2a6 + 1− a8)E1 + E2 ∼ 3E1 + 3E2. (4.2.21)

Clearly, 2a6+1−a8 ≤ 3 is absurd. Thus 2a6+1−a8 ≥ 4. And 2a6+1−a8 ≤ 7
since a6 ≤ 3. Locally at Q, since iQ(E1) = iQ(E2) = 4, we have

2a6 + 1− a8 ≡ 0 mod 5.

So 2a6 + 1 − a8 = 5. Then relation (4.2.21) implies 2E1 ∼ 2E2. By [Pro10,
Proposition 2.9], we conclude that E1 ∼ E2, a contradiction.

Case ii.2. a8 = 0 and b8 > 0.
In the case

2S + b8E2 ∼ −8KX ∼ −6KX + E1 + E2 ∼ S + (a6 + 1)E1 + E2.

This implies that b8 ≤ 1. Hence b8 = 1 and

S ∼ (a6 + 1)E1. (4.2.22)
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Considering relations (4.2.19) and (4.2.22),

(2a6 + 1)E1 ∼ 3E1 + 3E2. (4.2.23)

Clearly 2a6 + 1 ≥ 4 and 2a6 + 1 ≤ 7 since a6 ≤ 3. Locally at Q, since
iQ(E1) = iQ(E2) = 4, we have

2a6 + 1 ≡ 1 mod 5.

Since 4 ≤ 2a6 + 1 ≤ 7, this is impossible.

(iii). Recall the cases with Bv (No.F) and Bvi (No.E) (see Subsubcase
II-3-iii in the proof of Theorem 4.2.12). We have P−2 = 1, P−4 = 3. Assume,
to the contrary, that dimϕ−4(X) = 1.

We can write −2KX ∼ D for some effective divisor D. By the same
argument as (ii), D = E1+E2 with Ei reduced and irreducible and iQ(Ei) = 4
for i = 1, 2 where Q is the singularity “(1, 5)”. Note that, however, we do
not know if E1 and E2 are different.

We can write

| − 4KX | = |2S|+ a4E1 + b4E2,

where |S| is an irreducible rational pencil of surfaces and a4E1 + b4E2 is the
fixed part, a4, b4 ∈ N. Hence

2S + a4E1 + b4E2 ∼ −4KX ∼ 2(−2KX) ∼ 2E1 + 2E2.

Since a4E1 + b4E2 is the fixed part of |2S + a4E1 + b4E2|, we may assume
a4 ≤ b4 ≤ 2.

If b4 = 2, then 2S ∼ (2 − a4)E1. Hence E1 ≤ S by the irreducibility of
E1. Then

1 = h0(E1) ≥ h0(2S − E1) ≥ h0(S) = 2,

a contradiction.
If b4 = 1 ≥ a4, then 2S ∼ (2− a4)E1 + E2 ≥ E1 + E2. Hence E1 ≤ S by

the irreducibility of E1. Then

1 = h0(E1 + E2) ≥ h0(2S − E1) ≥ h0(S) = 2,

a contradiction.
Hence a4 = b4 = 0 and −4KX ∼ 2S ∼ 2E1+2E2. Note that h0(E1+E2) =

1 and
2E1 + 2E2 ∈ |2S| = |S|+ |S|,

we have
S ∼ 2E1 ∼ 2E2.
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Hence
4(−KX − E1) ∼ 2(E1 − E2) ∼ 0.

By [Pro10, Proposition 2.9], there are no 4-torsion Weil divisors. So

E1 − E2 ∼ 2(−KX − E1) ∼ 0.

Then
−2KX ∼ E1 + E2 ∼ 2E1 ∼ S.

This contradicts h0(−2KX) = 1.
So we have proved the theorem.

To make the summary, Theorems 4.2.12 and 4.2.15 directly imply the
following:

Corollary 4.2.16. Let X be a Q-Fano 3-fold with P−1 = 0. Then δ1(X) ≤ 8
except for the following cases:

No.1. {2× (1, 2), 3× (2, 5), (1, 3), (1, 4)} δ1(X) = 10;
No.2. {5× (1, 2), 2× (1, 3), (2, 7), (1, 4)} δ1(X) = 10;
No.3. {5× (1, 2), 2× (1, 3), (3, 11)} δ1(X) = 10;
No.4. {5× (1, 2), (1, 3), (3, 10), (1, 4)} δ1(X) = 10;
No.A. {7× (1, 2), (3, 7), (1, 5)} δ1(X) = 8;
No.B. {6× (1, 2), (4, 9), (1, 5)} δ1(X) = 8;
No.C. {5× (1, 2), (5, 11), (1, 5)} δ1(X) = 8;
No.D. {4× (1, 2), (6, 13), (1, 5)} δ1(X) = 8;
No.E. {7× (1, 2), (3, 8), (1, 5)} δ1(X) = 4;
No.F. {5× (1, 2), (4, 9), (1, 3), (1, 5)} δ1(X) = 4.

Theorem 1.2.9 follows directly from Theorems 4.2.8 and 4.2.10, and Corol-
laries 4.2.3 and 4.2.16.

4.3 When is | − mKX | not composed with a

pencil (Part II)?

As we have seen in the last section, the condition ρ(X) = 1 is crucial to
proving Theorem 4.2.2. For arbitrary weak Q-Fano 3-folds, we have to study
in an alternative way. Naturally what we can prove is weaker than Theorem
1.2.9.

Let X be a weak Q-Fano 3-fold. We are going to estimate δ1(X) from
above. The main idea is to relate this problem to the value distribution of
the Hilbert polynomial χ−m = P−m. Recall that this is done by Proposition
2.6.2, which gives the following corollary.
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Corollary 4.3.1. Let X be a weak Q-Fano 3-fold. If

P−m > rX(−KX)3m+ 1

for some integer m, then | −mKX | is not composed with a pencil.

Next we estimate the number m which satisfies Corollary 4.3.1. We will
do this in two steps as follows.

Proposition 4.3.2. Let X be a weak Q-Fano 3-fold. Take an arbitrary real
number 0 < t ≤ 37. Denote rmax := max{ri ∈ BX} the maximum of local
indices of singularities. If

m ≥ max

{
37,

rmaxt

3
,

√
6rX +

12

t(−K3
X)

}
,

then P−m ≥ rX(−K3
X)m + 2. In particular, | −mKX | is not composed with

a pencil.

Proof. By Reid’s formula, there exists a basket of singularities

BX = {(bi, ri) | i = 1, . . . , s; 0 < bi ≤
ri
2

; bi is coprime to ri}

such that we have the formula

P−n =
1

12
n(n+ 1)(2n+ 1)(−K3

X) + 2n+ 1− l(−n)

for any n > 0, where

l(−n) =
∑
i

n∑
j=1

jbi(ri − jbi)
2ri

.

To estimate the lower bound of P−n, we need to bound l(−n) from above.
For any pair (b, r) ∈ BX , we have r ≤ 24 by inequality (4.1.1). In fact,

we have the following estimation.

1. If r = 2, then

jb(r − jb)
2r

=

{
1
4
, if j odd;

0, if j even.

2. If r is odd, then jb(r−jb)
2r

≤ r2−1
8r

.
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3. If r is even and r > 2, then

jb(r − jb)
2r

≤

{
r−2
2

r+2
2

2r
= r2−4

8r
, if jb 6= r/2;

r2

8r
, if jb = r/2.

Clearly, b 6= r/2 under the same situation. Since jb = r/2 and
(j − 1)b = r/2 can not hold simultaneously, we have

(j − 1)b(r − (j − 1)b)

2r
+
jb(r − jb)

2r
≤ r2 − 4

8r
+
r2

8r
≤ 2 · (r2 − 1)

8r
.

Hence, when r is even and r > 2, we have

n∑
j=1

jb(r − jb)
2r

≤ n · r
2 − 1

8r
. (4.3.1)

By the way, inequality (4.3.1) also holds when r is odd.
Recall that we have

r∑
j=1

jb(r − jb)
2r

=
r2 − 1

12
.

Hence, whenever r > 2 and n ≥ rmaxt
3

, we have

n∑
j=1

jb(r − jb)
2r

= bn
r
cr

2 − 1

12
+

n∑
j=1

jb(r − jb)
2r

≤ bn
r
cr

2 − 1

12
+ min

{
n · r

2 − 1

8r
,
r2 − 1

12

}
≤ r2 − 1

12r
(n+

r

3
) (4.3.2)

≤ r2 − 1

12r
· (t+ 1)n

t
.

We prove the second inequality here. Assume, to the contrary, that

bn
r
cr

2 − 1

12
+ n · r

2 − 1

8r
>
r2 − 1

12r
(n+

r

3
), (4.3.3)

and

bn
r
cr

2 − 1

12
+
r2 − 1

12
>
r2 − 1

12r
(n+

r

3
). (4.3.4)
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Inequality (4.3.3) implies n > 2r
3
. But from inequality (4.3.4), we have n < 2r

3
,

a contradiction.
Since X is weak Q-Fano, recall that we have inequality∑

i

(ri −
1

ri
) ≤ 24

by inequality (4.1.1). Denote by N2 the number of ri = 2 in BX . Then, if
n ≥ rmaxt

3
,

l(−n) =
∑
i

n∑
j=1

jbi(ri − jbi)
2ri

=
N2

4
bn+ 1

2
c+

∑
ri>2

n∑
j=1

jbi(ri − jbi)
2ri

≤ N2

4
bn+ 1

2
c+

(t+ 1)n

t

∑
ri>2

r2
i − 1

12ri

≤ N2

4
bn+ 1

2
c+

(t+ 1)n

t
·

24− 3
2
N2

12

≤ 2(t+ 1)n

t
−N2

((t+ 1)n

8t
− 1

4
bn+ 1

2
c
)

≤ 2(t+ 1)n

t

where (t+1)n
8t
− 1

4
bn+1

2
c ≥ 0 whenever n ≥ t. Hence

P−n =
1

12
n(n+ 1)(2n+ 1)(−K3

X) + 2n+ 1− l(−n)

≥ 1

6
n3(−K3

X) +
n2

4
(−K3

X) + 1− 2n

t
.

By [CC08], −K3
X ≥ 1

330
. Hence n2

4
(−K3

X) ≥ 1 if n ≥ 37. Ifm ≥
√

6rX + 12
t(−K3

X)
,

then

P−m ≥
1

6
m3(−K3

X) + 2− 2m

t

≥ 1

6

(
6rX +

12

t(−K3
X)

)
m(−K3

X) + 2− 2m

t

= rX(−K3
X)m+ 2.

We complete the proof.
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In practice, we will take a suitable t to apply Proposition 4.3.2. Note that
rmax ≤ 24.

Proposition 4.3.3. Let X be a weak Q-Fano 3-fold.

(i) If rX ≤ 660, then
√

6rX + 3
2(−K3

X)
< 67. In particular,

P−m ≥ rX(−K3
X)m+ 2

for m ≥ 67.

(ii) If rX > 660, then rX = 840, and P−m ≥ rX(−K3
X)m+ 2 for m ≥ 71.

Proof. Statement (i) is clear since −K3
X ≥ 1

330
by [CC08] and take t = 8 in

Proposition 4.3.2. We mainly prove (ii) here.
First of all, by Proposition 4.1.1, rX = 840 and R = (3, 5, 7, 8) or

(2, 3, 5, 7, 8).
For r > 2, we use the inequality (4.3.2) (in the proof of Proposition 4.3.2)

that
n∑
j=1

jb(r − jb)
2r

≤ r2 − 1

12r
(n+

r

3
).

Then

l(−n) =
∑
i

n∑
j=1

jbi(ri − jbi)
2ri

≤ N2

4
bn+ 1

2
c+

∑
ri>2

r2
i − 1

12ri
(n+

ri
3

)

≤ n+ 1

8
+

32 − 1

12 · 3
(n+ 1) +

52 − 1

12 · 5
(n+

5

3
)

+
72 − 1

12 · 7
(n+

7

3
) +

82 − 1

12 · 8
(n+

8

3
)

=
19907n

10080
+

295

72

≤ 2n+
7

3

as long as n ≥ 71.
Hence

P−n =
1

12
n(n+ 1)(2n+ 1)(−K3

X) + 2n+ 1− l(−n)

67



≥ 1

6
n3(−K3

X) +
(n2

4
(−K3

X)− 10

3

)
+ 2.

By [CC08], −K3
X ≥ 1

330
. Hence n2

4
(−K3

X) ≥ 10
3

whenever n ≥ 71. If m ≥
71 >

√
6rX , then

P−m ≥
1

6
m3(−K3

X) + 2

≥ 1

6
(6rX)m(−K3

X) + 2

= rX(−K3
X)m+ 2.

We finish the proof.

Theorem 1.2.14 directly follows from Corollary 4.3.1 and Proposition
4.3.3.

4.4 Birationality and generic finiteness

In this section, we consider the birationality and generic finiteness of anti-
pluricanonical maps ϕ−m.

4.4.1 Main reduction

Recall that by Lemma 2.7.2, we can reduce the birationality and generic
finiteness problems on X to that on Y .

Lemma 4.4.1 (cf. [Chen11, 2.6]). Let X be a weak Q-Fano 3-fold and
π : Y −→ X a resolution. Then, for any m > 0, ϕ−m is birational (resp.
generically finite) if and only if so is Φ|KY +d(m+1)π∗(−KX)e|.

4.4.2 Key theorem

Let X be a weak Q-Fano 3-fold on which P−m0 ≥ 2 for some integer m0 > 0.
Suppose that m1 ≥ m0 is an integer with P−m1 ≥ 2 and that | − m1KX |
and | −m0KX | are not composed with the same pencil. Recall that, for any
m > 0 with P−m > 1,

ι(m) =

{
1, if | −mKX | is not composed with a pencil;

P−m − 1, if | −mKX | is composed with a pencil.

Set D := −m0KX and keep the same notation as in Section 2.4. We may
modify the resolution π in Section 2.4 such that the movable part |M−m|
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of |bπ∗(−mKX)c| is base point free for all m0 ≤ m ≤ m1. Pick a generic
irreducible element S of |M−m0|. We have

m0π
∗(−KX) = ι(m0)S + Fm0

for some effective Q-divisor Fm0 . In particular, we see that

m0

ι(m0)
π∗(−KX)− S ∼Q effective Q-divisor.

Define the real number

µ0 = µ0(|S|) := inf{t ∈ Q+ | tπ∗(−KX)− S ∼Q effective Q-divisor}.

Remark 4.4.2. Clearly, we have µ0 ≤ m0

ι(m0)
. For all k such that | − kKX | and

| −m0KX | are composed with the same pencil, we have

kπ∗(−KX) = ι(k)S + Fk

for some effective Q-divisor Fk, and hence µ0 ≤ k
ι(k)

.

By our assumption on | − m1KX |, we know that |G| = |M−m1|S| is a
base point free linear system on S and h0(S,G) ≥ 2. Denote by C a generic
irreducible element of |G|. Since m1π

∗(−KX) ≥M−m1 , we have

m1π
∗(−KX)|S ≡ C +H

where H is an effective Q-divisor on S.
We define two numbers which will be the key invariants accounting for

the birationality and generic finiteness of ϕ−m. They are

ζ := (π∗(−KX) · C)Y = (π∗(−KX)|S · C)S and

ε(m) := (m+ 1− µ0 −m1)ζ.

Note that ζ and ε(m) are birational invariants by projection formula. Hence
we can modify π if necessary.

While studying the birationality and generic finiteness of ϕ−m, we always
require that the linear system Λm := |KY + d(m+ 1)π∗(−KX)e| satisfies the
following assumption for some integer m > 0.

Assumption 4.4.3. Keep the notation as above.

(1) The linear system Λm distinguishes different generic irreducible ele-
ments of |M−m0| (namely, ΦΛm(S ′) 6= ΦΛm(S ′′) for two different generic
irreducible elements S ′, S ′′ of |M−m0|).
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(2) The linear system Λm|S distinguishes different generic irreducible ele-
ments of the linear system |G| = |M−m1|S| on S.

The following is our key theorem.

Theorem 4.4.4 (cf. [Chen11, Theorem 3.5]). Let X be a weak Q-Fano 3-
fold. Keep the notation as above. Let m > 0 be an integer. If Assumption
4.4.3 is satisfied and ε(m) > 2 (resp. ε(m) > max{2 − g(C), 0}), then ϕ−m
is birational (resp. generically finite) onto its image.

Proof. By Lemma 4.4.1, we only need to prove the birationality (resp. generic
finiteness) of ΦΛm . Since Assumption 4.4.3(1) is satisfied, the usual bira-
tionality principle reduces the birationality (resp. generic finiteness) of ΦΛm

to that of ΦΛm|S for a generic irreducible element S of |M−m0|. Similarly,
due to Assumption 4.4.3(2), we only need to prove the birationality (resp.
generic finiteness) of ΦΛm|C for a generic irreducible element C of |G|. Now
we show how to restrict the linear system Λm to C.

Now assume ε(m) > 0. We can find a sufficiently large integer n so that

there exists a number µ
(n)
0 ∈ Q+ with 0 ≤ µ

(n)
0 − µ0 ≤ 1

n
, dε(m,n)e = dε(m)e

where ε(m,n) := (m+ 1− µ(n)
0 −m1)ζ, and

µ
(n)
0 π∗(−KX) ∼Q S + E(n)

for an effective Q-divisor E(n). In particular, ε(m,n) > 0. Re-modify our π
in Section 2.4 so that E(n) has simple normal crossing support.

For the given integer m > 0, we have

|KY + d(m+ 1)π∗(−KX)− E(n)e| � |KY + d(m+ 1)π∗(−KX)e|. (4.4.1)

Since ε(m,n) > 0, the Q-divisor

(m+ 1)π∗(−KX)− E(n) − S ≡ (m+ 1− µ(n)
0 )π∗(−KX)

is nef and big and thus

H1(Y,KY + d(m+ 1)π∗(−KX)− E(n)e − S) = 0

by Kawamata–Viehweg vanishing theorem. Hence we have surjective map

H0(Y,KY + d(m+ 1)π∗(−KX)− E(n)e) −→ H0(S,KS + Lm,n) (4.4.2)

where

Lm,n := (d(m+ 1)π∗(−KX)− E(n)e − S)|S ≥ dLm,ne (4.4.3)
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and Lm,n := ((m+ 1)π∗(−KX)− E(n) − S)|S. Moreover, we have

m1π
∗(−KX)|S ≡ C +H

for an effective Q-divisor H on S by the setting. Thus the Q-divisor

Lm,n −H − C ≡ (m+ 1− µ(n)
0 −m1)π∗(−KX)|S

is nef and big by ε(m,n) > 0. And by Kawamata–Viehweg vanishing theorem
again,

H1(S,KS + dLm,n −He − C) = 0.

Therefore, we have surjective map

H0(S,KS + dLm,n −He) −→ H0(C,KC +Dm,n) (4.4.4)

where

Dm,n := dLm,n −H − Ce|C ≥ dDm,ne (4.4.5)

and Dm,n := (Lm,n −H − C)|C with degdDm,ne ≥ dε(m,n)e.
Now by inequalities (4.4.1), (4.4.3), (4.4.5), and surjective maps (4.4.2),

(4.4.4), to prove the birationality (resp. generic finiteness) of ΦΛm|C , it is
sufficient to prove that |KC + dDm,ne| gives a birational (resp. generically
finite) map. Clearly this is the case whenever ε(m) > 2 (resp. > 2− g(C)),
which in fact implies deg(dDm,ne) ≥ dε(m,n)e ≥ 3 (resp. ≥ 3 − g(C)) and
KC + dDm,ne is very ample (resp. defines a finite map). We complete the
proof.

Corollary 4.4.5. Keep the same notation as above. For any integer m > 0,
set

ε(m, 0) := (m+ 1− m0

ι(m0)
−m1)ζ.

If ε(m, 0) > 0, then
Λm|S � |KS + Lm|

where Lm := (d(m+ 1)π∗(−KX)− 1
ι(m0)

Fm0e − S)|S.

Proof. First of all, relation (4.4.1) reads

|KY + d(m+ 1)π∗(−KX)− 1

ι(m0)
Fm0e| � |KY + d(m+ 1)π∗(−KX)e|.

(4.4.6)
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In fact, as long as ε(m, 0) > 0, the front part of the proof of Theorem 4.4.4 is
valid. In explicit, subjective map (4.4.2) reads the following surjective map

H0(Y,KY + d(m+ 1)π∗(−KX)− 1

ι(m0)
Fm0e) −→ H0(S,KS + Lm) (4.4.7)

where

Lm := (d(m+ 1)π∗(−KX)− 1

ι(m0)
Fm0e − S)|S. (4.4.8)

Hence we have proved the statement.

4.4.3 Applications

In order to apply Theorem 4.4.4, we need to verify Assumption 4.4.3 and
lower bound of ε(m) in advance, for which one of the crucial steps is to
estimate the lower bound of ζ.

Proposition 4.4.6 (cf. [Chen11, Theorem 3.2]). Let m > 0 be an integer.
Keep the same notation as in Subsection 4.4.2.

(i) If g(C) > 0 and ε(m) > 1, then ζ ≥ 2g(C)−2+dε(m)e
m

;

(ii) Moreover, if g(C) > 0, then

ζ ≥ 2g(C)− 1

µ0 +m1

;

(iii) If g(C) = 1, then ζ ≥ 1
rmax

, where rmax = max{ri ∈ BX} is the maxi-
mum of local indices of singularities;

(iv) If g(C) = 0, then ζ ≥ 2;

(v) If h0(−νKX) > 0 for some integer ν, then ζ ≥ 1
νrmax

.

Proof. (i). In the proof of Theorem 4.4.4, if g(C) > 0 and ε(m) > 1 then
|KC + dDm,ne| is base point free with

deg(KC + dDm,ne) ≥ 2g(C)− 2 + dε(m,n)e = 2g(C)− 2 + dε(m)e.

Denote by Nm the movable part of |KS + dLm,n −He|. Recall that M−m is
the movable part of bmπ∗(−KX)c and

H0(bmπ∗(−KX)c) = H0(KY + d(m+ 1)π∗(−KX)e).
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Noting the relations (4.4.1), (4.4.2), and |KS + dLm,n −He| � |KS + dLm,ne|
while applying [Chen01, Lemma 2.7], we get

mπ∗(−KX)|S ≥M−m|S ≥ Nm

and Nm|C ≥ KC + dDm,ne since the latter one is base point free. So we have

mζ = mπ∗(−KX)|S · C ≥ Nm · C ≥ deg(KC + dDm,ne).

Hence
mζ ≥ 2g(C)− 2 + dε(m)e.

(ii). Take m′ = min{m | ε(m) > 1}, then (i) implies ζ ≥ 2g(C)
m′

. We may

assume that m′ > µ0 +m1 otherwise ζ ≥ 2g(C)
µ0+m1

. Hence

ε(m′ − 1) = (m′ − 1 + 1− µ0 −m1)ζ

≥ (m′ − µ0 −m1)
2g(C)

m′
.

By the minimality of m′, it follows that ε(m′ − 1) ≤ 1. Hence m′ ≤
2g(C)

2g(C)−1
(µ0 +m1). Then

ζ ≥ 2g(C)

m′
≥ 2g(C)− 1

µ0 +m1

.

(iii). If g(C) = 1, then

ζ = (π∗(−KX) · C)Y = ((−KY + Eπ) · C)Y

= (−(KY + S) · C + S · C + Eπ · C)Y

= (−KS · C)S + (S · C + Eπ · C)Y

= (C2)S + (S · C + Eπ · C)Y .

Since C is free on the smooth surface S, (C2)S, (S · C)Y , and (Eπ · C)Y
are non-negative. Since (C2)S and (S · C)Y are integers, we may assume
(C2)S = (S · C)Y = 0 otherwise ζ ≥ 1. Hence ζ = Eπ · C.

On the other hand, take q : W → X is the resolution of isolated singu-
larities and we may assume that Y dominates W by p : Y → W . Then we
write

KW = q∗KX + ∆.

Here
∆ =

∑ ai
ri
Ei
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where Ei is the exceptional divisor over an isolated singular point of index ri
for some ri ∈ BX and ai is a positive integer. Then

Eπ = KY − p∗KW + p∗∆.

Take rmax = max{ri}. Then all the coefficients of Eπ are larger than 1
rmax

sinceKY−p∗KW is integral and effective and Supp(Eπ) = Supp(KY−p∗KW+
p−1
∗ ∆). By Eπ · C = ζ > 0, we know that there is at least one component E

of Eπ such that E · C > 0. Then Eπ · C ≥ 1
rmax

E · C ≥ 1
rmax

.
(iv). If g(C) = 0, then

ζ = (π∗(−KX)|S · C)S = ((−KY + Eπ)|S · C)S

≥ (−KY |S · C)S ≥ (−KS · C)S ≥ − deg(KC) = 2.

(v). If h0(−νKX) > 0 for some integer ν, then −νKX ∼ D for some
effective Weil divisor D. Similarly as (iii), π∗D is an effective Q-divisor with
all the coefficients larger than 1

rmax
. By π∗D · C = νζ > 0, we know that

there is at least one component D1 of π∗D such that D1 · C > 0. Then
ζ = 1

ν
π∗D · C ≥ 1

νrmax
D1 · C ≥ 1

νrmax
.

To verify Assumption 4.4.3(1), we have the following proposition.

Proposition 4.4.7 (cf. [Chen11, Proposition 3.6]). Let X be a weak Q-
Fano 3-fold. Keep the same notation as Subsection 4.4.2. Then Assumption
4.4.3(1) is satisfied for all

m ≥

{
m0 + 6, if m0 ≥ 2;

2, if m0 = 1.

Proof. We have

KY + d(m+ 1)π∗(−KX)e
≥ KY + d(m−m0 + 1)π∗(−KX) +M−m0e
= (KY + d(m−m0 + 1)π∗(−KX)e) +M−m0

≥M−m0 .

The last inequality is due to

h0(KY + d(m−m0 + 1)π∗(−KX)e) = h0(−(m−m0)KX) > 0

by Lemma 4.4.1 and [Chen11, Appendix], since m−m0 ≥ 6 whenever m0 ≥ 2
(resp. ≥ 1 whenever m0 = 1).
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When f : Y → Γ is of type (fnp), [Tan71, Lemma 2] implies that Λm can
distinguish different generic irreducible elements of |M−m0|. When f is of
type (fp), since the rational (i.e. Γ ∼= P1) pencil |M−m0 | can already separate
different fibers of f , Λm can naturally distinguish different generic irreducible
elements of |M−m0|.

It is slightly more complicated to verify Assumption 4.4.3(2).

Lemma 4.4.8 (cf. [Chen11, Lemma 3.7]). Let T be a smooth projective
surface with a base point free linear system |G|. Let Q be an arbitrary Q-
divisor on T . Denote by C a generic irreducible element of |G|. Then the
linear system |KT + dQe + G| can distinguish different generic irreducible
elements of |G| under one of the following conditions:

(i) |G| is not composed with an irrational pencil of curves and KT + dQe
is effective;

(ii) |G| is composed with an irrational pencil of curves, g(C) > 0, and Q is
nef and big;

(iii) |G| is composed with an irrational pencil of curves, g(C) = 0, Q is nef
and big, and Q ·G > 1.

Proof. The statement corresponding to (i) follows from [Tan71, Lemma 2]
and the fact that a rational pencil can automatically separate its different
generic irreducible elements.

For situations (ii) and (iii), we pick a generic irreducible element C of |G|.
Then, since h0(S,G) ≥ 2, G ≡ sC for some integer s ≥ 2 and C2 = 0. Denote
by C1 and C2 two generic irreducible elements of |G| such that C1 +C2 ≤ |G|.
Then Kawamata–Viehweg vanishing theorem gives the surjective map

H0(T,KT + dQe+G) −→ H0(C,KC1 +D1)⊕H0(C2, KC2 +D2)

where Di := (dQe+G− Ci)|Ci
with deg(Di) ≥ Q · Ci > 0 for i = 1, 2.

If g(C) > 0, Riemann–Roch formula gives h0(Ci, KCi
+ Di) > 0 for i =

1, 2. Thus |KT + dQe+G| can distinguish C1 and C2.
If g(C) = 0 and Q · C > 1, then h0(Ci, KCi

+ Di) > 0 for i = 1, 2. So
|KT + dQe+G| can also distinguish C1 and C2.

Proposition 4.4.9 (cf. [Chen11, Proposition 3.8, 3.9]). Let X be a weak
Q-Fano 3-fold. Keep the same notation as in Subsection 4.4.2. Then As-
sumption 4.4.3(2) is satisfied for all

m ≥

{
m0 +m1 + 6, if m0 ≥ 2;

m1 + 2, if m0 = 1.
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Proof. Assuming m ≥ m0 + m1, we have ε(m, 0) > 0, and Corollary 4.4.5
implies that

Λm|S � |KS + Lm|.
It suffices to prove that |KS+Lm| can distinguish different generic irreducible
elements of |G|.

For a suitable integer m > 0, we have the following relations:

KS + Lm = (KY )|S + d(m+ 1)π∗(−KX)− 1

ι(m0)
Fm0e|S

≥ (KY + d(m+ 1−m0 −m1)π∗(−KX)e)|S +M−m1|S.

Thus, if |G| is not composed with an irrational pencil of curves, |KS + Lm|
can distinguish different irreducible elements provided that

KY + d(m+ 1−m0 −m1)π∗(−KX)e

is effective, which holds for m −m0 −m1 ≥ 6 whenever m0 ≥ 2 (resp. ≥ 1
whenever m0 = 1) by [Chen11, Appendix].

Assume |G| is composed with an irrational pencil of curves. we have

KS + Lm ≥ KS + dLme

= KS + d((m+ 1)π∗(−KX)− 1

ι(m0)
Fm0 − S)|Se

≥ KS + d((m−m1 + 1)π∗(−KX)− 1

ι(m0)
Fm0 − S)|Se+M−m1|S.

We can take Q = ((m−m1 + 1)π∗(−KX)− 1
ι(m0)

Fm0 − S)|S in Lemma 4.4.8

since ε(m, 0) > 0.
If g(C) > 0, Lemma 4.4.8(ii) implies that Assumption 4.4.3(2) is satisfied

for m ≥ m0 +m1.
If g(C) = 0, by Lemma 4.4.8(iii), we need the condition ε(m, 0) = (m +

1− m0

ι
−m1)ζ = Q · C > 1. But this holds automatically for m ≥ m0 +m1

by Proposition 4.4.6(iv).
We complete the proof.

Now we can treat the birationality of ϕ−m using Theorem 4.4.4.

Theorem 4.4.10 (cf. [Chen11, Theorem 4.1, 4.2, 4.5]). Let X be a weak
Q-Fano 3-fold. Let ν0 be an integer such that h0(−ν0KX) > 0. Keep the
same notation as in Subsection 4.4.2. Then ϕ−m is birational onto its image
if one of the following holds:

(i) m ≥ max{m0 +m1 + a(m0), b3µ0c+ 3m1};
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(ii) m ≥ max{m0 +m1 + a(m0), b5
3
µ0 + 5

3
m1c, bµ0c+m1 + 2rmax};

(iii) m ≥ max{m0 +m1 + a(m0), bµ0c+m1 + 2ν0rmax},

where a(m0) =

{
6, if m0 ≥ 2;

1, if m0 = 1.

Proof. By Propositions 4.4.7 and 4.4.9, Assumption 4.4.3 is satisfied if m ≥
m0 +m1 + a(m0).

By Proposition 4.4.6(v), ζ ≥ 1
ν0rmax

. If m ≥ bµ0c + m1 + 2ν0rmax, then
ε(m) = (m+ 1− µ0 −m1)ζ > 2, which implies (iii).

For (i) and (ii), we will discuss on the value of g(C).

Case 1. g(C) = 0.
By Proposition 4.4.6(iv), ζ ≥ 2. If m ≥ bµ0c + m1 + 1, then ε(m) =

(m+ 1− µ0 −m1)ζ > 2.

Case 2. g(C) ≥ 2.
By Proposition 4.4.6(ii), ζ ≥ 3

µ0+m1
. If m ≥ b5

3
µ0 + 5

3
m1c then ε(m) ≥

(m+ 1− µ0 −m1)ζ > 2.

Case 3. g(C) = 1.
By Proposition 4.4.6(ii), ζ ≥ 1

µ0+m1
. If m ≥ b3µ0c + 3m1, then ε(m) =

(m + 1 − µ0 − m1)ζ > 2. So we have proved (i). On the other hand, by
Proposition 4.4.6(iii), ζ ≥ 1

rmax
. If m ≥ bµ0c + m1 + 2rmax, then ε(m) =

(m+ 1− µ0 −m1)ζ > 2. Thus (ii) is proved.

Similarly, we have a generic finiteness criterion.

Theorem 4.4.11. Let X be a weak Q-Fano 3-fold. Keep the same notation
as in Subsection 4.4.2. Then ϕ−m is generically finite onto its image if one
of the following holds:

(i) m ≥ max{m0 +m1 + a(m0), b2µ0c+ 2m1};

(ii) m ≥ max{m0 +m1 + a(m0), bµ0c+m1 + rmax},

where a(m0) =

{
6, if m0 ≥ 2;

1, if m0 = 1.

Proof. By Propositions 4.4.7 and 4.4.9, Assumption 4.4.3 is satisfied if m ≥
m0 +m1 + a(m0).

We will discuss on the value of g(C).

Case 1. g(C) = 0.
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By Proposition 4.4.6(iv), ζ ≥ 2. If m ≥ bµ0c + m1 + 1, then ε(m) =
(m+ 1− µ0 −m1)ζ > 2.

Case 2. g(C) ≥ 2.
If m ≥ bµ0c+m1 then ε(m) ≥ (m+ 1− µ0 −m1)ζ > 0.

Case 3. g(C) = 1.
By Proposition 4.4.6(ii), ζ ≥ 1

µ0+m1
. If m ≥ b2µ0c + 2m1, then ε(m) =

(m + 1 − µ0 − m1)ζ > 1. So we have proved (i). On the other hand, by
Proposition 4.4.6(iii), ζ ≥ 1

rmax
. If m ≥ bµ0c + m1 + rmax, then ε(m) =

(m+ 1− µ0 −m1)ζ > 1. Thus (ii) is proved.

In practice, usually we just use the fact µ0 ≤ m0

ι(m0)
≤ m0. For very few

cases, we will utilize a precise upper bound of µ0 rather than m0 by Remark
4.4.2.

Theorems 4.4.10 and 4.4.11 are optimal in some cases due to the following
examples.

Example 4.4.12 ([IF00, List 16.6]). Consider general weighted hypersurface
X6d ⊂ P(1, a, b, 2d, 3d) where 1 ≤ a ≤ b and d = a + b such that X6d is a
Q-Fano 3-fold with rmax = d. By [IF00, List 16.6], there are exactly 12 such
examples. Then ϕ−3d is birational onto its image but ϕ−(3d−1) is not, and
ϕ−2d is generically finite onto its image but ϕ−(2d−1) is not.

On the other hand, We can take ν0 = 1, m0 = µ0 = a and m1 = b, then

3d = b3µ0c+ 3m1

= bµ0c+m1 + 2rmax

= bµ0c+m1 + 2ν0rmax

and

2d = b2µ0c+ 2m1

= bµ0c+m1 + rmax.

Hence Theorems 4.4.10 and 4.4.11 tell that ϕ−m is birational onto its image
for m ≥ 3d, and ϕ−m is generically finite onto its image for m ≥ 2d.

Theorems 4.4.10 and 4.4.11 directly imply the following result which gen-
eralizes a result of Fukuda [Fuk91, Main theorem].

Corollary 4.4.13. Let X be a weak Q-Fano 3-fold with Gorenstein singu-
larities. Then ϕ−m is birational (resp. generically finite) onto its image for
all m ≥ 4 (resp. ≥ 3).
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Proof. By Reid’s formula, P−1 = 1
2
(−K3

X) + 3 > 3. Hence we can take
m0 = ν0 = 1.

If | −KX | is not composed with a pencil, then we can take m1 = 1 and
µ0 ≤ m0 = 1. And the result follows directly from Theorems 4.4.10(iii) and
4.4.11(ii).

If | − KX | is composed with a pencil, then µ0 ≤ m0

ι(m0)
< 1

2
. By Reid’s

formula again, P−2 = 5
2
(−K3

X) + 5 > rX(−K3
X)2 + 1. We can take m1 = 2

by Corollary 4.3.1. And the result follows directly from Theorems 4.4.10(iii)
and 4.4.11(ii).

4.4.4 Proof of Theorems 1.2.11 and 1.2.15

Now we prove our main results on the birationality of ϕ−m.

Proof of Theorem 1.2.11. To apply Theorem 4.4.10, we always use the fact
µ0 ≤ m0. By [CC08, Theorem 1.1] and Theorem 1.2.9, we can take m0 ≤ 8
and m1 ≤ 10 to apply Theorem 4.4.10(i) and (ii). Hence m0 + m1 + 6 ≤ 24
and 5

3
(m0 +m1) ≤ 30. By Theorem 4.4.10, it is sufficient to prove that either

3m0 + 3m1 ≤ 39 or m0 +m1 + 2rmax ≤ 39 holds if we choose suitable m0 and
m1. (Note that ν0 is not used in this proof.)

Case 1. P−1 ≥ 2.
In this case, we can take m0 = 1 and m1 ≤ 6 (resp. m1 = 1 whenever

P−1 > 2) by Theorem 4.2.8. Hence 3m0 + 3m1 ≤ 21 (resp. ≤ 6 whenever
P−1 > 2). This proves Corollary 1.2.12.

Case 2. P−1 = 1.
Recall the proof of Theorem 4.2.10. We take m0 = n0. If m0 ≤ 5, then

we can take m1 ≤ 7 and hence 3m0 + 3m1 ≤ 36. Similarly, if m0 = 6 and if
we can take m1 ≤ 7, then 3m0 + 3m1 ≤ 39.

If m0 = n0 = 6 and δ1(X) = 8, we can take m1 = 8. Theorem 4.2.4
implies that

P−1 = P−2 = P−3 = P−4 = P−5 = 1, P−6 = P−7 = 2.

Then n0
1,2 = 2, n0

1,3 = 2, n0
1,4 = 2−σ5, ε5 = 2−σ5, 0 = ε6 = 3−ε. Hence ε = 3

and σ5 ≤ 2, and this implies (σ5, n
0
1,5) = (2, 1). Then ε5 = 0 and B(5)(B) =

{2× (1, 2), 2× (1, 3), (1, 5), (1, s)} for some s ≥ 6. This implies ε7 = 0 since
there are no further packings. On the other hand, ε7 = 2− 2σ5 + 2n0

1,5 +n0
1,6.

Hence n0
1,6 = 0 and B(7) = {2 × (1, 2), 2 × (1, 3), (1, 5), (1, s)} with s ≥ 7.

Since B(7) admits no prime packings, B = B(7). By inequalities (4.2.3) and
(4.2.4), s can only be 8, 9, 10. Hence m0 +m1 + 2rmax ≤ 6 + 8 + 2× 10 = 34.
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If m0 = n0 ≥ 7, then

P−1 = P−2 = P−3 = P−4 = P−5 = P−6 = 1.

The proof of Theorem 4.2.10 implies B(5) = {(1, 2), (2, 5), (1, 3), (1, 4), (1, s)}
with s ≥ 6. Since γ(B(5)) > 0, we have s ≤ 11. Noting that B is dominated
by B(5), we see rmax ≤ 11. By Theorem 4.2.10, we can take m0 ≤ 8 and
m1 ≤ 9. Hence m0 +m1 + 2rmax ≤ 8 + 9 + 2× 11 = 39.

Case 3. P−1 = P−2 = 0.
By the proof of Theorem 4.2.12 and Theorem 4.2.15, if B is of type No.1,

No.2 or No.4, then we have rmax ≤ 10 and may take m0 = 8, m1 = 10. Hence
m0 + m1 + 2rmax ≤ 8 + 10 + 2 × 10 = 38. If B is of type No.5-No.6, then
we have rmax ≤ 7 and may take m0 = 7, m1 = 8. Hence m0 +m1 + 2rmax ≤
7+8+2×7 = 29. If B is of type No.7-No.23, then we can take m0 = m1 = 6.
Hence 3m0 + 3m1 ≤ 36. Now the remaining case is type No.3:

{5× (1, 2), 2× (1, 3), (3, 11)}.

Recall that P−8 = P−9 = 2 and −4KX ∼ E is a prime divisor by the proof
of Theorem 4.2.15(i). By the proof of Theorem 4.2.4, | − 8KX | has no fixed
part. If | − 8KX | and | − 9KX | are composed with a same pencil, we can
write

| − 8KX | = |S ′|,
| − 9KX | = |S ′|+ F,

where F is the fixed part. This implies that

−KX ∼ −9KX − (−8KX) = F,

which contradicts P−1 = 0. Hence | − 8KX | and | − 9KX | are composed with
different pencils, and we can take m0 = 8, m1 = 9 and m0 +m1 +2rmax = 39.

Case 4. P−1 = 0, P−2 > 0.
By [CC08, Proposition 3.10, Case 1], we can take m0 = 6. We can take

m1 the same as in the proof of Theorem 4.2.12 and Theorem 4.2.15. If
m1 ≤ 6, then 3m0 + 3m1 ≤ 36. If m1 ≥ 7, observing Subsubcase II-3-ii and
Subsubcase II-3-iii in the proof of Theorem 4.2.12, we can see that rmax ≤ 11
holds for any such basket except

Bd = {4× (1, 2), (6, 13), (1, 5)}.
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Except for Bd, we have m0 +m1 + 2rmax ≤ 6 + 8 + 2× 11 = 36. Now we deal
with Bd. We claim that we can take m1 = 7. Recall that

P−1 = P−3 = 0, P−2 = P−4 = P−5 = 1, P−6 = P−7 = 2.

Clearly |−6KX | and |−7KX | are both composed with pencils. We only need
to show that they are composed with different pencils. To the contrary, we
assume that | − 6KX | and | − 7KX | are composed with the same pencil. If
−2KX ∼ D is a prime divisor, then by the proof of Theorem 4.2.4, | − 6KX |
has no fixed part. By assumption, we can write

| − 6KX | = |S ′|,
| − 7KX | = |S ′|+ F,

where F is the fixed part. This implies that

−KX ∼ −7KX − (−6KX) = F,

a contradiction. Hence −2KX ∼ D is not a prime divisor. By the proof of
Theorem 4.2.15(ii), D = E1 + E2 with E1 and E2 different prime divisors.
Also we can write

| − 6KX | = |S ′|+ a6E1,

| − 7KX | = |S ′|+ F,

where a6E1 and F are the fixed parts with a6 ≤ 3. If a6 ≤ 1, then

S ′ ∼ 3(E1 + E2)− a6E1 ≥ 2E1 + 2E2 ∼ −4KX .

This implies | − 7KX | � | − 4KX |, which contradicts P−3 = 0. If a6 = 3,
as in the proof of Theorem 4.2.2, take m = 6 and E = E1 or 2E1 or 3E1,
inequality (4.2.1) must fail for some singularity P in Bd. Clearly, such an
offending singularity P must be “(6, 13)”. By equality (4.2.2), the local
index iP (E) of E can only be 9 or 11 since inequality (4.2.1) holds for other
0 ≤ i ≤ 12 and (b, r) = (6, 13). But clearly the local index iP (E1), iP (2E1),
and iP (3E1) can not be in the set {9, 11} simultaneously, a contradiction.
Finally we consider the case a6 = 2. Write −5KX ∼ B a fixed divisor. Then

B + S ′ + 2E1 ∼ −5KX − 6KX ∼ −4KX − 7KX ∼ 2E1 + 2E2 + S ′ + F,

that is, B ∼ 2E2 + F . Obviously, F 6= 0. As in the proof of Theorem 4.2.2,
take m = 5 and E = E1 or 2E1, inequality (4.2.1) must fail for some singu-
larity P in Bd. Clearly, such an offending singularity P must be “(6, 13)”.
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By equality (4.2.2), the local index iP (E) of E can only be 10 or 11 since
inequality (4.2.1) holds for other 0 ≤ i ≤ 12 and (b, r) = (6, 13). But clearly
the local index iP (E1), iP (2E1) can not be in the set {10, 11} simultaneously,
a contradiction.

We complete the proof.

Note that Theorem 1.2.13 follows from the proof of Theorem 1.2.11 and
Theorem 4.4.11.

Proof of Theorem 1.2.15. We shall apply Theorem 4.4.10 to treat arbitrary
weak Q-Fano 3-folds. We will choose suitable m0 and m1. Unless otherwise
specified, we will use the fact µ0 ≤ m0.

Case I. P−2 = 0.
In this case, the possible baskets are classified in Proposition 4.2.14. From

the list we can take m0 = 8. And we have rX ≤ 210, −K3
X ≥ 1

84
, and

rmax ≤ 14. By Proposition 4.3.2 with t = 8, we can take m1 = 38. Hence by
Theorem 4.4.10(ii), ϕ−m is birational onto its image for all m ≥ 76.

Case II. rmax ≥ 14.
Write Reid’s basket BX as

{(bi, ri) | i = 1, · · · , s; 0 < bi ≤
ri
2

; bi is coprime to ri}.

Recall that rX = l.c.m.{ri | i = 1, · · · , s} and that∑
i

(ri −
1

ri
) ≤ 24

by inequality (4.1.1). We recall the sequence R = (ri)i from the proof of
Proposition 4.1.1. Denote by r̃1 = rmax the largest value in R, by r̃2 the
second largest value, by r̃3, r̃4 the third, the forth, and so on. For instance,
if R = (2, 3, 4, 4, 5, 5), then r̃1 = 5, r̃2 = 4, r̃3 = 3, and r̃4 = 2. If the value
r̃j does not exist by definition, then we set r̃j = 1. In the previous example,
we have r̃5 = 1.

Clearly rmax ≤ 24. We will compute an explicit bound for rX .
If rmax ≥ 23, then by inequality (4.1.1), there are no more values in R.

Hence rX ≤ 24.
If 20 ≤ rmax ≤ 22, then by inequality (4.1.1), r̃2 ≤ 4. Hence

rX ≤ l.c.m(rmax, 4, 3, 2) = 132.

If rmax = 19, then by inequality (4.1.1), r̃2 ≤ 5, and at most one of 3, 4, 5
can be in R. Hence rX ≤ 19× 5× 2 = 190.
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If rmax = 18, then by inequality (4.1.1), r̃2 ≤ 6, and at most one of
3, 4, 5, 6 can be in R. Hence rX ≤ 18× 5 = 90.

If rmax = 17, then by inequality (4.1.1), r̃2 ≤ 7. If r̃2 ≥ 5, then by
inequality (4.1.1), r̃3 ≤ 2 and hence r̃X ≤ 17 × 7 × 2 = 238. If r̃2 ≤ 4, then
rX ≤ l.c.m(17, 4, 3, 2) = 204.

If rmax = 16, then by inequality (4.1.1), r̃2 ≤ 8. If r̃2 ≥ 6, then by
inequality (4.1.1), r̃3 ≤ 2 and hence rX ≤ 16 × 7 = 112. If r̃2 ≤ 5, then
rX ≤ l.c.m(16, 5, 4, 3, 2) = 240.

If rmax = 15, then by inequality (4.1.1), r̃2 ≤ 9. If r̃2 ≥ 6, then by
inequality (4.1.1), r̃3 ≤ 3 and hence rX ≤ l.c.m(rmax, r̃2, 3, 2) ≤ 15× 7× 2 =
210. If r̃2 ≤ 5, then rX ≤ l.c.m(15, 5, 4, 3, 2) = 60.

If rmax = 14, then by inequality (4.1.1), r̃2 ≤ 10. If r̃2 ≥ 8, then by
inequality (4.1.1), r̃3 ≤ 2 and hence r̃X ≤ 14 × 9 = 126. If r̃2 ≤ 7, then rX
divides l.c.m(14, 6, 5, 4, 3, 2) = 420. But by inequality (4.1.1), 5, 4, 3 can not
be in R simultaneously, hence rX < 420. In particular, rX ≤ 210.

In summary, when rmax ≥ 14, we have rX ≤ 240.
We can take m0 = 8 by [CC08, Theorem 1.1]. And we have rX ≤ 240,

−K3
X ≥ 1

240
(note that rXK

3
X is an integer), and rmax ≤ 24. If rmax ≤ 22,

by Proposition 4.3.2 with t = 6, we can take m1 = 44. Hence by Theorem
4.4.10(ii), ϕ−m is birational onto its image for all m ≥ 96. If rmax = 23 or 24,
by Proposition 4.3.2 with t = 2, rX ≤ 24, −K3

X ≥ 1
24

, we can take m1 = 37.
Hence by Theorem 4.4.10(ii), ϕ−m is birational onto its image for all m ≥ 93.

Case III. rmax < 14 and P−1 > 0.
In this case, ν0 = 1 and by [CC08, Theorem 1.1], we can take m0 = 8.
If rX ≤ 660 and rmax ≤ 12, then by Proposition 4.3.2 with t = 15,

rmax ≤ 12, and −K3
X ≥ 1

330
, we can take m1 = 65. Hence by Theorem

4.4.10(iii), ϕ−m is birational onto its image for all m ≥ 97.
If rX ≤ 660 and rmax = 13, Then r̃2 ≤ 11. If r̃2 ≥ 9, then r̃3 ≤ 2 and

rX ≤ 286. If r̃2 = 8, then r̃3 ≤ 3 and rX ≤ 312. If r̃2 = 7, then r̃3 ≤ 4
and 3, 4 can not be in R simultaneously, hence rX ≤ 546. If r̃2 ≤ 6, then rX
divides 780 and hence rX ≤ 390 by Proposition 4.1.1. In summary, rX ≤ 546.
By Proposition 4.3.2 with t = 10, rmax = 13, and −K3

X ≥ 1
330

, we can take
m1 = 61. Hence by Theorem 4.4.10(iii), ϕ−m is birational onto its image for
all m ≥ 95.

If rX > 660, then rX = 840 and rmax = 8. By Theorem 1.2.14, we can
take m1 = 71. Hence by Theorem 4.4.10(iii), ϕ−m is birational onto its image
for all m ≥ 95.

Case IV. rmax < 14, P−1 = 0, and P−2 > 0.
In this case, ν0 = 2 and by [CC08, Proposition 3.10, Case 1], we can take
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m0 = 6.
If P−4 = 1, then P−2 = 1. By the proof of Theorem 4.2.12 (note that

the arguments on baskets are valid without assuming ρ = 1), we are exactly
in the situation (P−3, P−4) = (0, 1), corresponding to the last paragraph
of Subsubcase II-3-iii of Theorem 4.2.12. In fact, the possible baskets are
classified in the following list:

{9× (1, 2), (1, 3), (1, 7)},
{8× (1, 2), (2, 5), (1, 7)},
{8× (1, 2), (2, 5), (1, 6)},
{7× (1, 2), (3, 7), (1, 6)},
{6× (1, 2), (4, 9), (1, 6)},
{7× (1, 2), (3, 7), (1, 5)},
{6× (1, 2), (4, 9), (1, 5)},
{5× (1, 2), (5, 11), (1, 5)},
{4× (1, 2), (6, 13), (1, 5)}.

Hence in this case rX ≤ 130, −K3
X ≥ 1

130
, and rmax ≤ 13. By Proposition

4.3.2 with t = 7, we can take m1 = 37. Hence by Theorem 4.4.10(iii), ϕ−m
is birational onto its image for all m ≥ 95.

Hence, from now on, we assume that P−4 > 1. So we may take m0 = 4.
If rmax ≤ 8, then rX divides l.c.m(8, 7, 6, 5, 4, 3, 2) = 840. Suppose rX <

840, then rX ≤ 420. By Proposition 4.3.2 with t = 20 and −K3
X ≥ 1

330
, we

can take m1 = 54. Hence by Theorem 4.4.10(iii), ϕ−m is birational onto its
image for all m ≥ 90. Suppose rX = 840, then R = (3, 5, 7, 8) or (2, 3, 5, 7, 8)
as we have seen in the proof of Proposition 4.1.1. However,

P−1 =
1

2
(−K3

X)−
∑ bi(ri − bi)

2ri
+ 3

> 3− 1

4
− 2

6
− 6

10
− 12

14
− 15

16
> 0, (4.4.9)

a contradiction.
The above argument reminds us to find a condition corresponding to

P−1 = 0. Assume that 2 is not in R, then

P−1 =
1

2
(−K3

X)−
∑ bi(ri − bi)

2ri
+ 3

> 3− 1

8

∑
(ri −

1

ri
) ≥ 0,
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a contradiction. Hence, 2 ∈ R.
Consider the case rmax = 9. If r̃2 ≤ 6, then rX ≤ l.c.m(9, 6, 5, 4, 3, 2) =

180. If r̃2 = 8, then by inequality (4.1.1) and 2 ∈ R, r̃2 ≤ 5 and rX ≤
l.c.m(9, 8, 5, 4, 3, 2) = 360. If r̃2 = 7 and 5 6∈ R, then

rX ≤ l.c.m.(9, 7, 6, 4, 3, 2) = 252.

If r̃2 = 7 and 5 ∈ R, then 6 6∈ R and rX divides l.c.m(9, 7, 5, 4, 3, 2) = 630.
In summary, rX ≤ 360 or rX = 630. Whenever rX ≤ 360, by Proposition
4.3.2 with t = 12 and −K3

X ≥ 1
330

, we can take m1 = 50. Hence by Theorem
4.4.10(iii), ϕ−m is birational onto its image for all m ≥ 90. Whenever rX =
630, then 2, 5, 7, 9 must be in R. Hence R = (2, 5, 7, 9) or (2, 2, 5, 7, 9) by
inequality (4.1.1). In this case, arguing as inequality (4.4.9), BX can only be
{2 × (1, 2), (2, 5), (3, 7), (4, 9)}. We will choose suitable m1 and modify the
upper bound of µ0. Since P−4 = 2, |−4KX | is composed with a pencil. Note
that P−7 = 10 and P−3 = 1. If | − 7KX | is not composed with a pencil, then
we can take m1 = 7. By Theorem 4.4.10(ii), ϕ−m is birational onto its image
for all m ≥ 29. If | − 7KX | is also composed with a pencil, then we know
µ0 ≤ 7

9
by Remark 4.4.2. Also we can see P−61 = 5294 > rX(−K3

X)61 + 1
by direct computation where −K3

X = 43
315

. Hence we can take m1 = 61
by Corollary 4.3.1. Hence by Theorem 4.4.10(iii), ϕm is birational for all
m ≥ 97.

Consider the case rmax = 10. If r̃2 ≤ 6, then rX ≤ l.c.m(10, 6, 5, 4, 3, 2) =
60. If r̃2 = 7, then rX divides l.c.m(10, 7, 5, 4, 3, 2) = 420, but 3, 4 can not
be in R simultaneously, hence rX ≤ 210. If r̃2 = 8, then r3 ≤ 4 and rX ≤
l.c.m(10, 8, 4, 3, 2) = 120. If r̃2 = 9, then r̃3 ≤ 3 and rX ≤ l.c.m(10, 9, 3, 2) =
90. Hence in summary, rX ≤ 210. By Proposition 4.3.2 with t = 10 and
−K3

X ≥ 1
210

, we can take m1 = 39. Hence by Theorem 4.4.10(ii), ϕ−m is
birational onto its image for all m ≥ 71.

Consider the case rmax = 11. If r̃2 = 10, then r̃3 ≤ 2 and rX ≤ 110. If r̃2 =
9 or 8, then r̃3 ≤ 3 and rX ≤ 264. If r̃2 = 7, then r̃3 ≤ 4 and 3, 4 can not be in
R simultaneously, hence rX ≤ 308 or rX = l.c.m(11, 7, 3, 2) = 462. If r̃2 = 6,
then 5, 4 can not be in R simultaneously, hence rX ≤ l.c.m(11, 6, 5, 3, 2) =
330. If r̃2 ≤ 5, then rX divides l.c.m(11, 5, 4, 3, 2) = 660. In summary,
rX ≤ 330 or rX = 462 or rX = 660. Whenever rX = 660, then 2, 3, 4, 5, 11
must be in R. Hence R = (2, 3, 4, 5, 11) by inequality (4.1.1). Arguing as
inequality (4.4.9), this implies P−1 > 0, a contradiction. Whenever rX ≤ 330,
by Proposition 4.3.2 with t = 13 and −K3

X ≥ 1
330

, we can take m1 = 48.
Hence by Theorem 4.4.10(ii), ϕ−m is birational onto its image for all m ≥
86. If rX = 462, then 2, 3, 7, 11 must be in R. Hence R = (2, 3, 7, 11) or
(2, 2, 3, 7, 11) by inequality (4.1.1). Arguing as inequality (4.4.9), BX can
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only be {2 × (1, 2), (1, 3), (3, 7), (5, 11)}. In this case we can prove P−52 =
2612 > rX(−K3

X)52 + 1 by direct computation where −K3
X = 50

462
. Hence we

can take m1 = 52. By Theorem 4.4.10(ii), ϕ−m is birational onto its image
for all m ≥ 93.

Consider the case rmax = 12. Then r̃2 ≤ 10 and at most one of 5, 6, 7, 8, 9, 10
will be inR. Hence rX ≤ 84. By Proposition 4.3.2 with t = 5 and −K3

X ≥ 1
84

,
we can take m1 = 37. Hence by Theorem 4.4.10(ii), ϕ−m is birational onto
its image for all m ≥ 68.

Finally, consider the case rmax = 13. Then r̃2 ≤ 9. If r̃2 = 9 or 8, then
r̃3 ≤ 2 and rX ≤ 234. If r̃2 = 7, then r̃3 ≤ 3 and rX = 546 or 182. If
r̃2 ≤ 6, then rX divides 780 and hence rX ≤ 390 by Proposition 4.1.1. In
summary, rX ≤ 390 or rX = 546. Whenever rX ≤ 390, by Proposition
4.3.2 with t = 12 and −K3

X ≥ 1
330

, we can take m1 = 52. Hence by The-
orem 4.4.10(ii), ϕ−m is birational onto its image for all m ≥ 93. Whenever
rX = 546, then R = (2, 3, 7, 13). Argue as inequality (4.4.9), BX can only
be {(1, 2), (1, 3), (3, 7), (6, 13)}. We will choose suitable m1 and modify the
upper bound of µ0. Since P−4 = 2, |−4KX | is composed with a pencil. Note
that P−10 = 21 and P−6 = 5. If |−10KX | is not composed with a pencil, then
we can take m1 = 10. By Theorem 4.4.10(ii), ϕ−m is birational onto its image
for all m ≥ 40. If | − 10KX | is also composed with a pencil, then we know
µ0 ≤ 1

2
by Remark 4.4.2. Also we can prove P−57 = 3540 > rX(−K3

X)57 + 1
by direct computation where −K3

X = 61
546

. Hence we can take m1 = 57. By
Theorem 4.4.10(ii), ϕ−m is birational onto its image for all m ≥ 95.
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5
On birational geometry of

minimal threefolds with
numerically trivial canonical

divisors

In this chapter, we investigate minimal 3-folds with K ≡ 0. We will prove
Theorems 1.2.17 and 1.2.18.

For the convenience, we introduce the following definition.

Definition 5.0.14. (X,L, T ) is called a polarized triple if X is a minimal
3-fold with q(X) = 0 and KX ≡ 0, L is a nef and big Weil divisor, and T is
a numerically trivial Weil divisor on X.

Note that we assume q(X) = 0 in the definition. The case that q(X) > 0
is relatively easy and we treat it in Section 5.2 (see Theorem 5.2.2).

This chapter is organized as follows. We collect some facts in Section
5.1. We treat the Gorenstein case as a generalization of Fukuda and Oguiso–
Peternell’s results in Section 5.2. We study the birationality of polarized
triples in Section 5.3 and give an effective criterion for the birationality of
linear systems. In the last section, to apply the birationality criterion, we
estimate several quantities of polarized triples. As applications, we prove
Theorems 1.2.17 and 1.2.18.

5.1 Some facts about minimal 3-folds with

K ≡ 0

We collect some facts about minimal 3-folds withK ≡ 0 proved by Kawamata
[Kaw86] and Morrison [Mor86].
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By Kawamata [Kaw85, Theorem 8.2], KX ∼Q 0 and we define the global
index

I(X) = min{m ∈ N | mKX ∼ 0}.

Note that i(X)|I(X).

Theorem 5.1.1 ([Kaw86, Mor86]). Let X be a minimal 3-fold with KX ≡ 0.
The following facts hold:

(i) 0 ≤ χ(OX) ≤ 4;

(ii) χ(OX) = 0 if and only if X has Gorenstein singularities;

(iii) If q(X) > 0, then X is smooth;

(iv) If q(X) = 0 and χ(OX) ≥ 2, then I(X) ∈ {2, 3, 4, 6};

(v) If q(X) = 0 and χ(OX) = 1, then

I(X) ∈ {2, 3, 4, 5, 6, 8, 10, 12};

(vi) If I(X) ∈ {5, 8, 10, 12}, then χ(OX) = 1, q(X) = h2(OX) = 0, i(X) =
I(X), and the singular points can be described explicitly by Morrison
[Mor86, Proposition 3].

Proof. (i) is proved by Kawamata [Kaw86, Theorem 3.1]. (ii) is a direct
consequence of equality (2.5.1). (iii) is proved by Kawamata [Kaw85, Kaw86]
(see [Mor86, Section 1]). (iv) is proved by Morrison [Mor86, Proposition 1,
Proof of Theorem 1] and (v) is proved by Morrison [Mor86, Proposition 3,
Proof of Theorem 2]. (vi) is a direct consequence of (ii)-(v) and Morrison
[Mor86, Proposition 3].

5.2 Gorenstein case

Throughout this section, we assume that X is a minimal Gorenstein 3-fold
with KX ≡ 0 and L is a nef and big Weil divisor on X. Note that L is
a Cartier divisor since i(X) = 1. Recall that we have a canonical model
µ : (X,L) → (Z,H) such that Z is a 3-fold with canonical singularities and
µ∗KZ = KX , H is an ample Catier divisor with L = µ∗H (cf. [OP95, Lemma
0.2]).

Lemma 5.2.1 (cf. [OP95, Lemma 1.1]). Let D be a divisor on X. Then

(i) (D · L2)2 ≥ (D2 · L)(L3);
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(ii) D · L2 ≡ D2 · L mod 2;

(iii) If D · L2 = 1 and D2 · L ≥ 0, then D2 · L = L3 = 1.

Proof. See the proof of [OP95, Lemma 1.1]. Note that KX ≡ 0 is sufficient
in the proof.

We prove Theorem 1.2.17 for the Gorenstein case. It is a direct general-
ization of Fukuda [Fuk91] and Oguiso–Peternell [OP95], and we follow their
ideas.

Theorem 5.2.2. Let X be a minimal Gorenstein 3-fold with KX ≡ 0, a nef
and big Weil divisor L, and a Weil divisor T ≡ 0. Then |KX + mL + T |
gives a birational map for all m ≥ 5.

Proof. Note that L and T are Cartier divisors since i(X) = 1.
Case 1. dim Φ|L|(X) ≥ 1.
Take a resolution π : Y → X. Consider the linear system |KY +mπ∗L+

π∗T |. Note that
dim Φ|π∗L|(Y ) = dim Φ|L|(X) ≥ 1.

By [Fuk91, Key Lemma] with R = π∗L, r0 = 4, and r1 = 1, |KY + mπ∗L +
π∗T | gives a birational map for all m ≥ 5. So |KX+mL+T | gives a birational
map for all m ≥ 5.

Case 2. dim Φ|L|(X) ≤ 0.
In this case, since h0(L) > 0 by Riemann–Roch formula, we have h0(L) =

1. By Riemann–Roch formula again,

h0(2L) =
1

6
(23 − 2)L3 + 2h0(L) = L3 + 2.

First, we assume that |2L| is composed with a pencil of surfaces. Set
D := 2L and keep the same notation as in Section 2.4. Then we have

2π∗(L) ≥M ≡ aS ≥ (h0(2L)− 1)S = (L3 + 1)S.

Thus we have 2L3 ≥ (L3 + 1)(π∗(L)2 · S). This implies that L2 · π∗S =
π∗(L)2 · S = 1 since π∗(L)2 · S > 0. On the other hand, L · (π∗S)2 =
π∗(L) · π∗π∗S · S ≥ 0. Hence by Lemma 5.2.1(iii), L · (π∗S)2 = L3 = 1. And
hence M ≡ (L3 + 1)S = 2S, in particular, |2L| is composed with a rational
pencil. Consider the canonical model (Z,H). Since h0(H) = h0(L) = 1 and
H3 = L3 = 1, there exists an irreducible surface G such that |H| = {G}.
Denote by G′ the strict transform G. Then we may write 2L ∼ 2G′ + 2E
for some µ-exceptional divisor E. Note that Mov|2L| = |2π∗S|, hence π∗S ∼
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G′ + E ′ for some µ-exceptional divisor E ′. But this implies dim |π∗S| = 0, a
contradiction.

Hence |2L| is not composed with a pencil of surface. Set D := 2L and
keep the same notation as in Section 2.4. Then we have 2π∗(L) = |M | + F
such that |M | is base point free. Consider a smooth element N in |M |.
Note that |KX + mL + T | gives a birational map if so does the restriction
|KY +N + π∗((m− 2)L+ T )||N by Lemma 2.7.2 and birationality principle
(cf. [OP95, Lemma 1.3]). On the other hand, Kawamata–Viehweg vanishing
theorem and adjunction formula give

|KY +N + π∗((m− 2)L+ T )||N = |KN + π∗((m− 2)L+ T )|N |.

Reider’s theorem (cf. [Reider88]) implies that |KN + π∗((m − 2)L + T )|N |
gives a birational map for m ≥ 5 if (π∗L)2 · N ≥ 2. Now we assume that
(π∗L)2 · N = 1, then Lemma 5.2.1(iii) implies that L3 = L2 · π∗N = L ·
(π∗N)2 = 1. Consider the canonical model (Z,H). Since h0(H) = H3 = 1,
and L2 ·π∗N = 1, a similar argument implies dim |π∗N | = 0, a contradiction.

We completed the proof.

By Theorems 5.2.2 and 5.1.1(ii)(iii), to prove Theorem 1.2.17, we only
need to consider polarized triples (X,L, T ) with χ(OX) > 0.

5.3 Birationality criterion

In this section, we give a criterion for the birationality of polarized triples.

5.3.1 Key theorem

Let (X,L, T ) be a polarized triple. Take a Weil divisor L0 such that L0 ≡ L.
Suppose that h0(m0L0) ≥ 2 for some integer m0 > 0. Suppose that m1 ≥
m0 is an integer with h0(m1L0) ≥ 2 and that |m1L0| and |m0L0| are not
composed with the same pencil.

Set D := m0L0 and keep the same notation as in Section 2.4. We may
modify the resolution π in Section 2.4 such that the movable part |Mm| of
|bπ∗(mL0)c| is base point free for all m0 ≤ m ≤ m1. Set ιm := ι(mL0)
defined in Section 2.4. Recall that, for any integer m with h0(mL0) > 1,

ιm =

{
1, if |mL0| is not composed with a pencil;

h0(mL0)− 1, if |mL0| is composed with a pencil.

Pick a generic irreducible element S of |Mm0|. We have

m0π
∗(L0) = ιm0S + Fm0

90



for some effective Q-divisor Fm0 . In particular, we see that

m0

ιm0

π∗(L0)− S ∼Q effective Q-divisor.

Define the real number

µ0 = µ0(|S|) := inf{t ∈ Q+ | tπ∗(L0)− S ∼Q effective Q-divisor}.

Remark 5.3.1. Clearly, we have 0 < µ0 ≤ m0

ιm0
≤ m0. For all k such that |kL0|

and |m0L0| are composed with the same pencil, we have

kπ∗(L0) = ιkS + Fk

for some effective Q-divisor Fk, and hence µ0 ≤ k
ιk

.

By our assumption on |m1L0|, we know that |G| = |Mm1|S| is a base point
free linear system on S and h0(S,G) ≥ 2. Denote by C a generic irreducible
element of |G|. Note that since KX ≡ 0, KY is pseudo-effective and hence
g(C) ≥ 1. Since m1π

∗(L0) ≥Mm1 , we have

m1π
∗(L0)|S ≡ C +H

where H is an effective Q-divisor on S.
We define two numbers which will be the key invariants accounting for

the birationality of Φ|KX+mL+T |. They are

ζ := (π∗(L) · C)Y = (π∗(L0) · C)Y = (π∗(L0)|S · C)S and

ε(m) := (m− µ0 −m1)ζ.

Note that ζ and ε(m) are birational invariants by projection formula. Hence
we can modify π if necessary. Also note that ζ > 0 since L is nef and big
and C is free.

While studying the birationality of Φ|KX+mL+T |, we always require that
the linear system Λm := |KY +dπ∗(mL+ T )e| satisfies the following assump-
tion for some integer m > 0.

Assumption 5.3.2. Keep the notation as above.

(1) The linear system Λm distinguishes different generic irreducible ele-
ments of |Mm0| (namely, ΦΛm(S ′) 6= ΦΛm(S ′′) for two different generic
irreducible elements S ′, S ′′ of |Mm0 |).

(2) The linear system Λm|S distinguishes different generic irreducible ele-
ments of the linear system |G| = |Mm1|S| on S.
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The following is our key theorem.

Theorem 5.3.3. Let (X,L, T ) be a polarized triple. Keep the notation as
above. Let m > 0 be an integer. If Assumption 5.3.2 is satisfied and ε(m) >
2, then Φ|KX+mL+T | is birational onto its image.

Proof. By Lemma 2.7.2, we only need to prove the birationality of ΦΛm . Since
Assumption 5.3.2(1) is satisfied, the usual birationality principle reduces the
birationality of ΦΛm to that of ΦΛm|S for a generic irreducible element S of
|Mm0 |. Similarly, due to Assumption 5.3.2(2), we only need to prove the
birationality of ΦΛm|C for a generic irreducible element C of |G|. Now we
show how to restrict the linear system Λm to C.

Now assume ε(m) > 0. We can find a sufficiently large integer n so that
there exists a number µn ∈ Q+ with 0 ≤ µn − µ0 ≤ 1

n
, dε(m,n)e = dε(m)e

where ε(m,n) := (m− µn −m1)ζ, and

µnπ
∗(L0) ∼Q S + En

for an effective Q-divisor En. In particular, ε(m,n) > 0, and ε(m,n) > 2
if ε(m) > 2. Re-modify our π in Section 2.4 so that En has simple normal
crossing support.

For the given integer m > 0, we have

|KY + dπ∗(mL+ T )− Ene| � |KY + dπ∗(mL+ T )e|. (5.3.1)

Since ε(m,n) > 0, the Q-divisor

π∗(mL+ T )− En − S ≡ (m− µn)π∗(L)

is nef and big and thus

H1(Y,KY + dπ∗(mL+ T )− Ene − S) = 0

by Kawamata–Viehweg vanishing theorem. Hence we have surjective map

H0(Y,KY + dπ∗(mL+ T )− Ene) −→ H0(S,KS + Lm,n) (5.3.2)

where

Lm,n := (dπ∗(mL+ T )− Ene − S)|S ≥ dLm,ne (5.3.3)

and Lm,n := (π∗(mL+ T )− En − S)|S. Moreover, we have

m1π
∗(L0)|S ≡ C +H
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for an effective Q-divisor H on S by the setting. Thus the Q-divisor

Lm,n −H − C ≡ (m− µn −m1)π∗(L)|S
is nef and big by ε(m,n) > 0. And by Kawamata–Viehweg vanishing theorem
again,

H1(S,KS + dLm,n −He − C) = 0.

Therefore, we have surjective map

H0(S,KS + dLm,n −He) −→ H0(C,KC +Dm,n) (5.3.4)

where

Dm,n := dLm,n −H − Ce|C ≥ dDm,ne (5.3.5)

and Dm,n := (Lm,n −H − C)|C with degDm,n = ε(m,n).
Now by inequalities (5.3.1), (5.3.3), (5.3.5), and surjective maps (5.3.2),

(5.3.4), to prove the birationality of ΦΛm |C , it is sufficient to prove that |KC+
dDm,ne| gives a birational map. Clearly this is the case whenever ε(m) > 2,
which in fact implies deg(dDm,ne) ≥ dε(m,n)e ≥ 3 and KC + dDm,ne is very
ample. We complete the proof.

Corollary 5.3.4. Keep the same notation as above. For any integer m > 0,
set

ε(m, 0) := (m− m0

ιm0

−m1)ζ.

If ε(m, 0) > 0, then
Λm|S � |KS + Lm|

where Lm := (dπ∗(mL+ T )− 1
ιm0

Fm0e − S)|S.

Proof. Recall that
m0π

∗(L0) = ιm0S + Fm0 .

First of all, relation (5.3.1) reads

|KY + dπ∗(mL+ T )− 1

ιm0

Fm0e| � |KY + dπ∗(mL+ T )e|.

In fact, as long as ε(m, 0) > 0, the front part of the proof of Theorem 5.3.3 is
valid. In explicit, subjective map (5.3.2) reads the following surjective map

H0(Y,KY + dπ∗(mL+ T )− 1

ιm0

Fm0e) −→ H0(S,KS + Lm)

where

Lm = (dπ∗(mL+ T )− 1

ιm0

Fm0e − S)|S.

Hence we have proved the statement.
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5.3.2 Criterion

In order to apply Theorem 5.3.3, we need to verify Assumption 5.3.2 and
ε(m) > 2 in advance, for which one of the crucial steps is to estimate the
lower bound of ζ.

Proposition 5.3.5. Let m > 0 be an integer. Keep the same notation as in
Subsection 5.3.1. Then

(i) If ε(m) > 1, then ζ ≥ 2g(C)−2+dε(m)e
m

;

(ii) Moreover,

ζ ≥ 2g(C)− 1

µ0 +m1 + 1
;

(iii) If g(C) = 1, then ζ ≥ 1;

(iv) i(X)ζ ∈ Z>0.

In summary,

ζ ≥
⌈
i(X) min

{
1,

3

µ0 +m1 + 1

}⌉
/i(X).

Proof. (i). Recall that since KX ≡ 0, KY is pseudo-effective and hence
g(C) ≥ 1. In the proof of Theorem 5.3.3, if ε(m) > 1 then |KC + dDm,ne| is
base point free with

deg(KC + dDm,ne) ≥ 2g(C)− 2 + dε(m,n)e = 2g(C)− 2 + dε(m)e.

Denote by Nm the movable part of |KS + dLm,n −He|. Note that

H0(OX(KX +mL+ T ))
∼= H0(OY (bπ∗(KX +mL+ T )c))
∼= H0(OY (KY + dπ∗(mL+ T )e)).

Denote by Mm the movable part of |bπ∗(KX +mL+ T )c|. Noting the rela-
tions (5.3.1), (5.3.2), and |KS + dLm,n −He| � |KS + dLm,ne| while applying
[Chen01, Lemma 2.7], we get

π∗(KX +mL+ T )|S ≥Mm|S ≥ Nm

and Nm|C ≥ KC + dDm,ne since the latter one is base point free. So we have

mζ = π∗(KX +mL+ T )|S · C ≥ Nm · C ≥ deg(KC + dDm,ne).
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Hence
mζ ≥ 2g(C)− 2 + dε(m)e.

(ii). Take m′ = min{m | ε(m) > 1}, then (i) implies ζ ≥ 2g(C)
m′

. We may

assume that m′ > µ0 +m1 + 1 otherwise ζ ≥ 2g(C)
µ0+m1+1

. Hence

ε(m′ − 1) = (m′ − 1− µ0 −m1)ζ

≥ (m′ − 1− µ0 −m1)
2g(C)

m′
.

By the minimality of m′, it follows that ε(m′ − 1) ≤ 1. Hence m′ ≤
2g(C)

2g(C)−1
(µ0 +m1 + 1). Then

ζ ≥ 2g(C)

m′
≥ 2g(C)− 1

µ0 +m1 + 1
.

(iii). Recall that
KY = π∗KX + Eπ ≡ Eπ,

where Eπ is an effective Q-Cartier Q-divisor whose support contains all π-
exceptional divisors since X has at worst terminal singularities. If g(C) = 1,
then

0 = ((KS + C) · C)S

= (KY · C)Y + (S · C)Y + (C2)S

= (Eπ · C)Y + (S · C)Y + (C2)S.

Since C is free on a free surface S, (C2)S, (S · C)Y , and (Eπ · C)Y are non-
negative. Hence (Eπ · C)Y = 0, which implies that (E · C)Y = 0 for any
π-exceptional divisor E on Y since X has at worst terminal singularities.
Hence ζ = (π∗L ·C)Y is an integer. On the other hand, ζ > 0. Hence ζ ≥ 1.

(iv). It follows from the fact that i(X)L is Cartier.
In summary, if g(C) = 1, by (iii), ζ ≥ 1; if g(C) ≥ 2, by (ii), ζ ≥ 3

µ0+m1+1
.

Then by (iv),

i(X)ζ ≥
⌈
i(X) min

{
1,

3

µ0 +m1 + 1

}⌉
.

We complete the proof.

Define

ρ0 := min{k ∈ Z>0 | h0(mL+ T ′) > 0 for all m ≥ k and for all T ′ ≡ 0}.

To verify Assumption 5.3.2, we have the following propositions.
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Proposition 5.3.6. Let (X,L, T ) be a polarized triple. Keep the same no-
tation as Subsection 5.3.1. Then Assumption 5.3.2(1) is satisfied for all
m ≥ m0 + ρ0.

Proof. We have

KY + dπ∗(mL+ T )e
≥ KY + dπ∗(mL+ T −m0L0) +Mm0e
= (KY + dπ∗(mL+ T −m0L0)e) +Mm0

≥Mm0 .

The last inequality is due to

h0(KY + dπ∗(mL+ T −m0L0)e)
= h0(KX +mL+ T −m0L0)) > 0

when m ≥ m0 + ρ0 by the definition of ρ0.
When f : Y → Γ is of type (fnp), [Tan71, Lemma 2] implies that Λm

can distinguish different generic irreducible elements of |Mm0|. When f is of
type (fp), since the rational pencil |Mm0| (recall that q(X) = 0) can already
separate different fibers of f , Λm can naturally distinguish different generic
irreducible elements of |Mm0|.

Proposition 5.3.7. Let (X,L, T ) be a polarized triple. Keep the same no-
tation as in Subsection 5.3.1. Then Assumption 5.3.2(2) is satisfied for all
m ≥ m0 +m1 + ρ0.

Proof. Assuming m ≥ m0 +m1 + 1, we have ε(m, 0) > 0, and Corollary 5.3.4
implies that

Λm|S � |KS + Lm|.
It suffices to prove that |KS+Lm| can distinguish different generic irreducible
elements of |G|.

For a suitable integer m > 0, we have

KS + Lm

= KY |S + dπ∗(mL+ T )− 1

ιm0

Fm0e|S

≥ (KY + dπ∗(mL+ T − (m0 +m1)L0)e)|S +Mm1 |S.

Thus, if |G| is not composed with an irrational pencil of curves, |KS + Lm|
can distinguish different irreducible elements provided that

KY + dπ∗(mL+ T − (m0 +m1)L0)e
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is effective, which holds for m−m0 −m1 ≥ ρ0.
Assume |G| is composed with an irrational pencil of curves, we have

KS + Lm

≥ KS + d(π∗(mL+ T )− 1

ιm0

Fm0 − S)|Se

≥ KS + d(π∗(mL+ T −m1L0)− 1

ιm0

Fm0 − S)|Se+Mm1 |S.

We can take Q = (π∗(mL + T − m1L0) − 1
ιm0

Fm0 − S)|S in Lemma 4.4.8

since ε(m, 0) > 0. Since g(C) > 0, Lemma 4.4.8(ii) implies that Assumption
5.3.2(2) is satisfied for m ≥ m0 +m1 + 1.

We complete the proof.

In summary, we have a criterion for birationality.

Theorem 5.3.8. Let (X,L, T ) be a polarized triple. Keep the same notation
as in Subsection 5.3.1. Then |KX +mL+ T | gives a birational map if

m > max

{
m0 +m1 + ρ0 − 1, µ0 +m1 +

2

ζ

}
.

This theorem is optimal in some sense by the following examples.

Example 5.3.9 ([IF00, 14.3 Theorem]). Consider the general weighted hy-
persurface X10 ⊂ P(1, 1, 1, 2, 5) which is a smooth Calabi–Yau 3-fold. Take
L = OX(1) and T = KX ∼ 0. Then |5L| gives a birational map but |4L|
does not.

On the other hand, we may take m0 = m1 = µ0 = ρ0 = 1 and ζ ≥ 1.
Hence Theorem 5.3.8 implies that |mL| gives a birational map for all m ≥ 5.

Example 5.3.10 ([IF00, 14.3 Theorem]). Consider the general weighted
hypersurface X8 ⊂ P(1, 1, 1, 1, 4) which is a smooth Calabi–Yau 3-fold. Take
L = OX(1) and T = KX ∼ 0. Then |4L| gives a birational map but |3L|
does not.

On the other hand, we may take m0 = m1 = µ0 = ρ0 = 1. Note that
S ∈ |L| and C ∈ |L|S|. Hence ζ = L3 = 2. Then Theorem 5.3.8 implies that
|mL| gives a birational map for all m ≥ 4.

Example 5.3.11 ([CCC11, Theorem 4.5]). Consider the general weighted
complete intersection X2,6 ⊂ P(1, 1, 1, 1, 1, 3) which is a terminal Calabi–Yau
3-fold. Take L = OX(1) and T = KX ∼ 0. Then |3L| gives a birational map
but |2L| does not.

On the other hand, we may take m0 = m1 = µ0 = ρ0 = 1. Note that
S ∈ |L| and C ∈ |L|S|. Hence ζ = L3 = 4. Then Theorem 5.3.8 implies that
|mL| gives a birational map for all m ≥ 3.
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5.4 Birationality on polarized triples

In this section, we consider the birationality problem on polarized triples. By
Theorem 5.3.8, we need to estimate m0, m1, ρ0, µ0, and ζ. First we will give
estimation for ρ0 by Reid’s formula. And then we reduce the estimation of
m1 to the estimation of Hilbert polynomial of L so that we can estimate both
m0 and m1 by Reid’s formula. Note that µ0 can be estimated by Remark
5.3.1 and ζ can be estimated by Proposition 5.3.5 once we have estimation
of m0 and m1.

We always assume that (X,L, T ) is a polarized triple with χ(OX) > 0 in
this section.

5.4.1 Estimation of ρ0

In this subsection, we estimate ρ0. Note that by Theorem 5.1.1(iv)(v) and
the fact that i(X)|I(X), we have

i(X) ∈ {2, 3, 4, 5, 6, 8, 10, 12}.

iQ(D) 0 1 2 3 4 5

(1, 2) 0 −1/8
(1, 3) 0 −2/9 −1/9
(1, 4) 0 −5/16 −1/4 −1/16
(1, 5) 0 −2/5 −2/5 −1/5 0

(2, 5) 0 −2/5 −1/5 −1/5 −1/5
(1, 6) 0 −35/72 −5/9 −3/8 −1/9 5/72

(1, 8) 0 −21/32 −7/8 −25/32 −1/2 −5/32
(3, 8) 0 −21/32 −3/8 −9/32 −1/2 −5/32
(1, 10) 0 −33/40 −6/5 −49/40 −1 −5/8
(3, 10) 0 −33/40 −3/5 −9/40 −3/5 −5/8
(1, 12) 0 −143/144 −55/36 −27/16 −14/9 −175/144
(5, 12) 0 −143/144 −19/36 −11/16 −5/9 −31/144
iQ(D) 6 7 8 9 10 11

(1, 8) 1/8 7/32

(3, 8) −3/8 −9/32
(1, 10) −1/5 7/40 2/5 3/8

(3, 10) −1/5 −9/40 −3/5 −9/40
(1, 12) −3/4 −35/144 2/9 9/16 25/36 77/144

(5, 12) −3/4 −35/144 −7/9 −7/16 −11/36 −67/144

Table A: table of cQ(D)
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Since we need to estimate the Hilbert polynomial of some divisor D, we
need to estimate the singular part cQ(D) in Reid’s formula. We list all the
possible values for cQ(D) with all the possible singularities in Table A. The
first row corresponds to the local index iQ(D) of D and the first column
corresponds to the possible singularities of Q. In the estimation, we will
always replace cQ(D) by the minimal value in the list corresponding to Q.

Note that for a singular point Q of index r ∈ {2, 3, 4, 5} and for any Weil
divisor D,

cQ(D) ≥ −r
2 − 1

12r
.

To estimate ρ0, we discuss on the value of i(X). Fix a Weil divisor T ′ ≡ 0.
Recall that L3 ≥ 1

i(X)
and λ(L) ≥ 1

i(X)
.

If i(X) ∈ {2, 3, 4, 5}, by Reid’s formula and equality (2.5.1),

h0(mL+ T ′) = χ(OX) +
m3 −m

6
L3 +mλ(L) +

∑
Q

cQ(mL+ T ′)

≥ χ(OX) +
m3 −m

6
L3 +mλ(L)−

∑
Q

r2
Q − 1

12rQ

=
m3 + 5m

6i(X)
− χ(OX).

Recall that χ(OX) ≤ 4 (or χ(OX) = 1 if i(X)=5), hence

ρ0 ≤


3, if i(X) = 5;

4, if i(X) ∈ {2, 3};
5, if i(X) = 4.

If i(X) = 6, then we write BX = {a × (1, 2), b × (1, 3), c × (1, 6)}. By
equality (2.5.1),

24χ(OX) =
3

2
a+

8

3
b+

35

6
c.

Hence c < 144
35
χ(OX). By Reid’s formula and equality (2.5.1),

h0(mL+ T ′) = χ(OX) +
m3 −m

6
L3 +mλ(L) +

∑
Q

cQ(mL+ T ′)

≥ χ(OX) +
m3 −m

6
L3 +mλ(L)− 1

8
a− 2

9
b− 5

9
c

=
m3 −m

6
L3 +mλ(L)− χ(OX)− 5

72
c
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>
m3 + 5m

36
− 9

7
χ(OX).

Recall that χ(OX) ≤ 4, hence ρ0 ≤ 6.
If i(X) = 8, by Morrison [Mor86, Proposition 3], we have i(X) = I(X),

χ(OX) = 1, and BX = {3× (1, 2), (1, 4), (b1, 8), (b2, 8)} for b1, b2 = 1 or 3. By
Reid’s formula,

h0(mL+ T ′) ≥ 1 +
m3 −m

6
L3 +mλ(L) +

∑
Q

cQ(mL+ T ′)

≥ 1 +
m3 −m

6
L3 +mλ(L)− 3× 1

8
− 5

16
− 2× 7

8

=
m3 + 5m

48
− 23

16
.

Hence ρ0 ≤ 4.
If i(X) = 10, by Morrison [Mor86, Proposition 3], we have i(X) = I(X),

χ(OX) = 1, and BX = {3 × (1, 2), (b1, 5), (b2, 5), (c, 10)} for b1, b2 = 1 or 2,
c = 1 or 3. By Reid’s formula,

h0(mL+ T ′) ≥ 1 +
m3 −m

6
L3 +mλ(L) +

∑
Q

cQ(mL+ T ′)

≥ 1 +
m3 −m

6
L3 +mλ(L)− 3× 1

8
− 2× 2

5
− 49

40

=
m3 + 5m

60
− 7

5
.

Hence ρ0 ≤ 5.
If i(X) = 12, recall that by Morrison [Mor86, Proposition 3], we have

i(X) = I(X), χ(OX) = 1, and BX = {2× (1, 2), 2× (1, 3), (1, 4), (b, 12)} for
b = 1 or 5. By Reid’s formula,

h0(mL+ T ′) ≥ 1 +
m3 −m

6
L3 +mλ(L) +

∑
Q

cQ(mL+ T ′)

≥ 1 +
m3 −m

6
L3 +mλ(L)− 2× 1

8
− 2× 2

9
− 5

16
− 27

16

=
m3 + 5m

72
− 61

36
.

Hence ρ0 ≤ 5.
In summary, we proved the following proposition.
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Proposition 5.4.1. We have the following estimation for ρ0:

ρ0 ≤


3, if i(X) = 5;

4, if i(X) ∈ {2, 3, 8};
5, if i(X) ∈ {4, 10, 12};
6, if i(X) = 6.

5.4.2 Estimation of m1

Recall that we have a criterion for a linear system not composing with a
pencil of surfaces by looking at its Hilbert polynomial by Proposition 2.6.2.

Proposition 5.4.2. Let L0 be a nef and big Weil divisor. If

h0(mL0) > i(X)L3
0m+ 1

for some integer m, then |mL0| is not composed with a pencil of surfaces.

5.4.3 Proof of Theorems 1.2.17 and 1.2.18

In this subsection, we prove Theorems 1.2.17 and 1.2.18 by estimating m0

and m1.

Proof of Theorem 1.2.17. To prove Theorem 1.2.17, by Section 5.2, we only
need to consider polarized triples (X,L, T ) with χ(OX) > 0. We discuss on
the value of i(X). Recall that

i(X) ∈ {2, 3, 4, 5, 6, 8, 10, 12}.

In the proof, we often use the fact that if Q is a cyclic singular point and D
is a Weil divisor with local index iQ(D) = 0, then cQ(D) = 0.

Case 1. i(X) = 2 or 3.
In this case, by Reid’s formula,

h0(i(X)L) ≥ χ(OX) +
i(X)3

6
L3 > 1,

h0(2i(X)L) ≥ χ(OX) +
8i(X)3

6
L3 > 2i(X)2L3 + 1.

Hence we can take L0 = L, m0 = i(X), and m1 = 2i(X). Then we have
µ0 ≤ i(X) by Remark 5.3.1. By Proposition 5.3.5, ζ ≥ 1

i(X)
. By Proposition

5.4.1, ρ0 ≤ 4. By Theorem 5.3.8, |KX +mL+ T | gives a birational map for
m ≥ 5i(X) + 1.
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Case 2. i(X) = 4.
In this case, by the proof of Lemma 2.5.1,

3∑
i=0

h0(5L+ iKX) = 4λ(5L).

Hence there exists i0 such that

h0(5L+ i0KX) ≥ λ(5L).

Take L0 = L+ i0KX . Then

h0(5L0) = h0(5L+ i0KX + 4i0KX)

= h0(5L+ i0KX)

≥ λ(5L)

= 20L3
0 + 5λ(L)

> 5i(X)L3
0 + 1.

On the other hand,

h0(4L0) = χ(OX) +
43 − 4

6
L3

0 + 4λ(L) > 4.

Hence h0(4L0) ≥ 5 and |5L0| is not composed with a pencil. Take m0 = 4.
By Proposition 5.4.1, ρ0 ≤ 5.

If |4L0| is composed with a pencil, then we have µ0 ≤ 1 by Remark 5.3.1
and we can take m1 = 5. By Proposition 5.3.5, ζ ≥ 1

2
. By Theorem 5.3.8,

|KX +mL+ T | gives a birational map for m ≥ 14.
If |4L0| is not composed with a pencil, then we have µ0 ≤ 4 and we can

take m1 = 4. By Proposition 5.3.5, ζ ≥ 1
2
. By Theorem 5.3.8, |KX +mL+T |

gives a birational map for m ≥ 13.

Case 3. i(X) = 6.
In this case, recall that 1 ≤ χ(OX) ≤ 4 and we write BX = {a×(1, 2), b×

(1, 3), c× (1, 6)}. By equality (2.5.1),

24χ(OX) =
3

2
a+

8

3
b+

35

6
c.

If χ(OX) = 1, there is only one solution satisfying i(X) = 6, which is
BX = {5× (1, 2), 4× (1, 3), (1, 6)}. We can take L0 = L+ i0KX for some i0
such that the local index of L0 at the point (1, 6) is 0. By Reid’s formula,

h0(3L0) ≥ 1 +
33 − 3

6
L3

0 + 3λ(L) +
∑
Q

cQ(3L0)
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≥ 1 +
33 + 15

36
− 5× 1

8
> 1,

h0(4L0) ≥ 1 +
43 − 4

6
L3

0 + 4λ(L) +
∑
Q

cQ(4L0)

≥ 1 +
43 + 20

36
− 4× 2

9
> 2,

h0(7L0) ≥ 1 +
73

6
L3

0 +
∑
Q

cQ(7L0)

≥ 1 +
73

6
L3

0 − 5× 1

8
− 4× 2

9
> 7i(X)L3

0 + 1.

Hence h0(3L0) ≥ 2 and |7L0| is not composed with a pencil. Take m0 = 3.
By Proposition 5.4.1, ρ0 ≤ 6.

If |4L0| and |3L0| are composed with the same pencil, then we have µ0 ≤ 2
by Remark 5.3.1. Take m1 = 7. By Proposition 5.3.5, ζ ≥ 1

3
. By Theorem

5.3.8, |KX +mL+ T | gives a birational map for m ≥ 16.
If |4L0| and |3L0| are not composed with the same pencil, then we can

take m1 = 4 and we have µ0 ≤ 3. By Proposition 5.3.5, ζ ≥ 1
2
. By Theorem

5.3.8, |KX +mL+ T | gives a birational map for m ≥ 13.
Now we assume that χ(OX) ≥ 2. Note that for any Weil divisor D and

singular point Q of index r,

cQ(3D) + cQ(3D + 3KX) =


−1

8
, if r = 2;

0, if r = 3;

−3
8
, if r = 6.

Hence

h0(3L) + h0(3L+ 3KX)

= 2χ(OX) + 2λ(3L) +
∑
Q

(cQ(3L) + cQ(3L+ 3KX))

= 2χ(OX) + 2λ(3L)− 1

8
a− 3

8
c

≥ 2λ(3L).

Therefore there exists a Weil divisor L0 ≡ L such that

h0(3L0) ≥ λ(3L) = 4L3 + 3λ(L) > 1.
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On the other hand,

h0(6L0) ≥ χ+
63

6
L3

0 > 6i(X)L3
0 + 1.

Hence |6L0| is not composed with a pencil.
Hence we can take m0 = 3 and m1 = 6. Then we have µ0 ≤ 3 by

Remark 5.3.1. By Proposition 5.3.5, ζ ≥ 1
3
. By Proposition 5.4.1, ρ0 ≤ 6.

By Theorem 5.3.8, |KX +mL+ T | gives a birational map for m ≥ 16.

Case 4. i(X) = 5.
In this case, recall that by Morrison [Mor86, Proposition 3], we have

i(X) = I(X), χ(OX) = 1, and BX = {(b1, 5), (b2, 5), (b3, 5), (b4, 5), (b5, 5)}
for bi = 1 or 2 for 1 ≤ i ≤ 5. We can take L0 = L + i0KX for some i0 such
that the local index of L0 at the point (b1, 5) is 0. By Reid’s formula,

h0(4L0) ≥ 1 +
43 − 4

6
L3

0 + 4λ(L) +
∑
Q

cQ(4L0)

≥ 1 +
43 + 20

30
− 4× 2

5
> 2,

h0(5L0) ≥ 1 +
53 − 5

6
L3

0 + 5λ(L)

≥ 1 +
53 + 25

30
= 6,

h0(6L0) ≥ 1 +
63 − 6

6
L3

0 + 6λ(L) +
∑
Q

cQ(6L0)

≥ 1 + 35L3
0 + 6λ(L)− 4× 2

5
> 6i(X)L3

0 + 1.

Hence h0(4L0) ≥ 3 and |6L0| is not composed with a pencil. Take m0 = 4.
By Proposition 5.4.1, ρ0 ≤ 3.

If |5L0| and |4L0| are composed with the same pencil, then we have µ0 ≤ 1
by Remark 5.3.1. Take m1 = 6. By Proposition 5.3.5, ζ ≥ 2

5
. By Theorem

5.3.8, |KX +mL+ T | gives a birational map for m ≥ 13.
If |4L0| is composed with a pencil, and |5L0| and |4L0| are not composed

with the same pencil, then we can take m1 = 5 and we have µ0 ≤ 2. By
Proposition 5.3.5, ζ ≥ 2

5
. By Theorem 5.3.8, |KX+mL+T | gives a birational

map for m ≥ 13.
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If |4L0| is not composed with a pencil, then we can take m1 = 4 and we
have µ0 ≤ 4. By Proposition 5.3.5, ζ ≥ 2

5
. By Theorem 5.3.8, |KX +mL+T |

gives a birational map for m ≥ 14.

Case 5. i(X) = 8.
In this case, recall that by Morrison [Mor86, Proposition 3], we have

i(X) = I(X), χ(OX) = 1, and BX = {3 × (1, 2), (1, 4), (b1, 8), (b2, 8)} for
b1, b2 = 1 or 3. We can take L0 = L + i0KX for some i0 such that the local
index of L0 at the point (b1, 8) is 0. By Reid’s formula,

h0(4L0) ≥ 1 +
43

6
L3

0 +
∑
Q

cQ(4L0)

≥ 1 +
43

48
− 7

8
> 1,

h0(6L0) ≥ 1 +
63

6
L3

0 +
∑
Q

cQ(6L0)

≥ 1 +
63

48
− 5

16
− 7

8
> 4,

h0(8L0) ≥ 1 +
83

6
L3

0 +
∑
Q

cQ(8L0)

= 1 +
83

6
L3

0

> 8i(X)L3
0 + 1.

Hence h0(4L0) ≥ 2 and |8L0| is not composed with a pencil. Take m0 = 4.
By Proposition 5.4.1, ρ0 ≤ 4.

If |6L0| and |4L0| are composed with the same pencil, then we have µ0 ≤ 6
4

by Remark 5.3.1. Take m1 = 8. By Proposition 5.3.5, ζ ≥ 3
8
. By Theorem

5.3.8, |KX +mL+ T | gives a birational map for m ≥ 16.
If |6L0| and |4L0| are not composed with the same pencil, then we can

take m1 = 6 and we have µ0 ≤ 4. By Proposition 5.3.5, ζ ≥ 3
8
. By Theorem

5.3.8, |KX +mL+ T | gives a birational map for m ≥ 16.

Case 6. i(X) = 10.
In this case, recall that by Morrison [Mor86, Proposition 3], we have

i(X) = I(X), χ(OX) = 1, and BX = {3 × (1, 2), (b1, 5), (b2, 5), (c, 10)} for
b1, b2 = 1 or 2, c = 1 or 3. We can take L0 = L+ i0KX for some i0 such that
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the local index of L0 at the point (c, 10) is 0. By Reid’s formula,

h0(4L0) = 1 +
43 − 4

6
L3

0 + 4λ(L) +
∑
Q

cQ(4L0)

≥ 1 +
43 + 20

60
− 2× 2

5
> 1,

h0(6L0) ≥ 1 +
63 − 6

6
L3

0 + 6λ(L) +
∑
Q

cQ(6L0)

≥ 1 +
63 + 30

60
− 2× 2

5
> 4,

h0(8L0) ≥ 1 +
83 − 8

6
L3

0 + 8λ(L) +
∑
Q

cQ(8L0)

≥ 1 + 84L3
0 + 8λ(L)− 2× 2

5
> 8i(X)L3

0 + 1.

Hence h0(4L0) ≥ 2 and |8L0| is not composed with a pencil. Take m0 = 4.
By Proposition 5.4.1, ρ0 ≤ 5.

If |6L0| and |4L0| are composed with the same pencil, then we have µ0 ≤ 3
2

by Remark 5.3.1. Take m1 = 8. By Proposition 5.3.5, ζ ≥ 3
10

. By Theorem
5.3.8, |KX +mL+ T | gives a birational map for m ≥ 17.

If |6L0| and |4L0| are not composed with the same pencil, then we can
take m1 = 6 and we have µ0 ≤ 4. By Proposition 5.3.5, ζ ≥ 3

10
. By Theorem

5.3.8, |KX +mL+ T | gives a birational map for m ≥ 17.

Case 7. i(X) = 12.
In this case, recall that by Morrison [Mor86, Proposition 3], we have

i(X) = I(X), χ(OX) = 1, and BX = {2× (1, 2), 2× (1, 3), (1, 4), (b, 12)} for
b = 1 or 5. We can take L0 = L+ i0KX for some i0 such that the local index
of L0 at the point (b, 12) is 0. By Reid’s formula,

h0(3L0) ≥ 1 +
33 − 3

6
L3

0 + 3λ(L) +
∑
Q

cQ(3L0)

≥ 1 +
33 + 15

72
− 2× 1

8
− 5

16
> 1,

h0(6L0) ≥ 1 +
63 − 6

6
L3

0 + 6λ(L) +
∑
Q

cQ(6L0)
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≥ 1 +
63 + 30

72
− 5

16
> 4,

h0(9L0) ≥ 1 +
93

6
L3

0 +
∑
Q

cQ(9L0)

≥ 1 +
93

6
L3

0 − 2× 1

8
− 5

16
> 9i(X)L3

0 + 1.

Hence h0(3L0) ≥ 2 and |9L0| is not composed with a pencil. Take m0 = 3.
By Proposition 5.4.1, ρ0 ≤ 5.

If |6L0| and |3L0| are composed with the same pencil, then we have µ0 ≤ 3
2

by Remark 5.3.1. Take m1 = 9. By Proposition 5.3.5, ζ ≥ 1
3
. By Theorem

5.3.8, |KX +mL+ T | gives a birational map for m ≥ 17.
If |6L0| and |3L0| are not composed with the same pencil, then we have

µ0 ≤ 3 and we can take m1 = 6. By Proposition 5.3.5, ζ ≥ 1
3
. By Theorem

5.3.8, |KX +mL+ T | gives a birational map for m ≥ 16.

Proof of Theorem 1.2.18. Since L has no stable components, take a suffi-
cient divisible k such that kL ∼ M is movable and effective and take a
sufficient small rational number δ > 0 such that (X, δM) is terminal. Run
a (KX + δM)-MMP with scaling of an ample divisor, it terminates on X ′

by Kawamata [Kaw92b]. Since i(X)l(KX + δM) ∼ i(X)lδM is movable for
l sufficient divisible, this MMP ψ : X 99K X ′ does not contract any di-
visors. Hence (X ′, δψ∗M) is terminal and so is X ′. Hence X ′ is a minimal
3-fold with KX′ ≡ 0 and ψ∗L is a nef and big Weil divisor by MMP. Note that
|KX+mL+T | gives a birational map if and only if so does |KX′+mψ∗L+ψ∗T |,
hence Theorem 1.2.18 follows from Theorem 1.2.17.
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