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Preface

In this book, we explain the proof of the theorem on finite generation of canon-
ical rings of algebraic varieties. The proof is based on the minimal model the-
ory. The main goal of this book is to go through the progress on the minimal
model theory in the past 30 years.

The finite generation of canonical rings is one of the main goals of the min-
imal model theory. Even though it has been proved now, the minimal model
theory is not yet complete. There are open problems such as the existence of
minimal models of an arbitrary algebraic variety, the abundance conjecture,
and the generalization to positive characteristics.

The minimal model theory was developed by many mathematicians from
different countries. Although the theory explained in this book works only for
algebraic varieties defined over a base field of characteristic 0, we apply var-
ious methods in a wider range which contains not only algebraic arguments
over characteristic 0, but also methods over positive characteristics and ana-
lytic methods. The breakthrough was accomplished by international collabo-
rations combining algebraic, geometric, and analytic methods.

The content of this book is based on my lectures at the University of Tokyo
in 2005, 2007, 2010, 2011, the Felix Klein lecture at Bonn University in 2006,
series lectures in Current Developments in Mathematics at Harvard University
in 2007, and intensive lectures at Osaka University in 2007.

I would like to thank Professor Takeshi Saito of the University of Tokyo for
the encouragement to write this book. I would also like to express my deep
gratitude to the anonymous referees who carefully read the manuscript and
made many suggestions.

In addition, I would like to thank Professor Burt Totaro for recommending
the translation of this book. I would also like to thank Professor Chen Jiang
for numerous clarifications, corrections, and modifications as well as an ex-
cellent translation. In particular, the proof of Lemma 2.1.8, the modifications
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of the condition (1) of Theorem 2.12.1 and (3) of the BCHM condition, Re-
mark 3.1.4, and Theorem 3.4.6 are all due to him.





Introduction

First, we will explain the overall plan of this book. Proofs and accurate defini-
tions will not be given here, but will appear in subsequent chapters with more
precise details.

Let X be a smooth projective complex algebraic variety, or in other words,
a closed subvariety in a complex projective space. Denote dim X = n and take
a positive integer m. A regular m-canonical differential form on X is defined
locally by h(x)(dx1 ∧ · · · ∧ dxn)⊗m, where x1, . . . , xn are local coordinates of
X and h is a regular function on X. The set of regular m-canonical differential
forms on X is a finite-dimensional C-linear space denoted by H0(X,mKX).
Here KX is the canonical divisor. For example, when m = 0, this space is just
C, and when m = 1, this space consists of all regular canonical differential
forms.

For two positive integers m,m′, we can define a multiplication map

H0(X,mKX) ⊗ H0(X,m′KX)→ H0(X, (m + m′)KX)

inducing a graded ring

R(X,KX) =
∞⊕

m=0

H0(X,mKX)

over the complex number field, which is called the canonical ring of X.
Two algebraic varieties X,Y are said to be birationally equivalent if there

are nonempty Zariski open subsets U ⊂ X, V ⊂ Y such that there is an iso-
morphism U � V . In this case Y is called a birational model of X, and the
canonical ring is a birational invariant, that is, R(X,KX) � R(Y,KY ). Birational
invariants reflect intrinsic properties of algebraic varieties.

The main theorem of this book is the following theorem proved by Birkar,
Cascini, Hacon, and McKernan ([16]):

1



2 CHAPTER 0. INTRODUCTION

Theorem 0.0.1 (Finite generation of canonical rings) For any smooth pro-
jective complex algebraic variety X, the canonical ring R(X,KX) is a finitely
generated graded C-algebra.

The proof uses the minimal model program (MMP). The main part of this
book is devoted to the foundation of the MMP.

If the transcendental degree of the canonical ring is n + 1, then X is said
to be of general type. In this case one can show that there exists a “mini-
mal model” X′ birationally equivalent to X with good properties. An MMP is
a sequence of operations constructing X′ starting from X. In general X′ has
singularities, but the singularities are mild so that the birational invariance
R(X,KX) � R(X′,KX′ ) still holds as the smooth case. The finite generation
of canonical rings of minimal models is a consequence of the “basepoint-free
theorem”.

When X is not of general type, by applying the “semipositivity theorem” of
algebraic fiber spaces, one can reduce the problem to the case of “log general
type”, and then derive the finite generation by the “log version” of the MMP.

The MMP is a process of changing birational models one after another. Dur-
ing this process, algebraic varieties with singularities naturally appear. How-
ever, those singularities are special kinds of normal singularities. The singular-
ities in the MMP are very interesting research objects for their own sake. With
the development of higher dimensional algebraic geometry, it is gradually be-
coming more common to consider algebraic varieties with singularities.

Proofs in the minimal model theory often use induction on integral invariants
such as dimensions and Picard numbers. In order for this to work well, it is
necessary to enhance the category of objects we consider. Here we extend to
the log version and the relative version.

In the log version, instead of a single algebraic variety X, we consider a
couple (X, B) consisting of X and an R-divisor B on X. For historical reasons,
this is called a log pair, and B is called a boundary divisor. Here an R-divisor
B =

∑
b jB j is a formal R-linear combination of subvarieties B j of codimension

1 with real coefficients b j. It is called a Q-divisor if b j are rational numbers.
Instead of the canonical divisor KX , the log canonical divisor KX + B plays the
main role.

Conditions on singularities are imposed onto the log pair (X, B). In this book,
we mainly consider the “KLT condition” (Kawamata log terminal condition)
and the “DLT condition” (divisorially log terminal condition). For example,
when X is smooth and the support

∑
B j of B is a “normal crossing divisor”,



3

these conditions correspond to inequalities 0 < b j < 1 and 0 < b j ≤ 1,
respectively.

In the relative version, all objects are considered over a base variety. Instead
of a single algebraic variety X, we consider a morphism f : X → S to a base
variety.

In summary, we are going to consider a log pair (X, B) with the KLT or DLT
condition and a projective morphism f : X → S to another algebraic variety.
Sometimes we use f : (X, B) → S for short to keep in mind the log version
and the relative version at the same time.

The log canonical ring is defined as

R(X/S ,KX + B) =
∞⊕

m=0

f∗(OX(⌞m(KX + B)⌟)).

Here the symbol ⌞⌟ means round down, that is, to replace each coefficient by
the nearest integer from below, and f∗ is the direct image of sheaves. R(X/S ,KX+

B) is a graded OS -algebra.
The log and relative version of the finite generation of canonical rings is as

follows:

Theorem 0.0.2 Let f : (X, B) → S be a projective morphism from a KLT
pair defined over the complex number field, where B is a Q-divisor. Then the
log canonical ring R(X/S ,KX + B) is a finitely generated graded OS -algebra.

In Chapter 1, we will give basic definitions used in this book. The main idea
is to associate a variety with a divisor called boundary and to consider them
as a pair. Such “logarithmization” makes it possible to introduce many new
methods. Log pairs are allowed to have mild singularities. Usually in alge-
braic geometry, nonsingular varieties are the central objects, but singularities
of pairs are indispensable and play important roles in the minimal model the-
ory. We will also explain two big theorems in characteristic 0 (the Hironaka
desingularization theorem and the Kodaira vanishing theorem), both of which
are main tools of this book. In particular, it is known that the vanishing theorem
fails when the characteristic is not 0, so most results of this book are in charac-
teristic 0. Then we will describe the classification theory of low-dimensional
algebraic varieties. The goal of this part is to provide examples, and it is logi-
cally independent.

In Chapter 2, we will explain the outline of the minimal model theory. There
are two main theorems: the basepoint-free theorem and the cone theorem. Us-
ing these theorems we formulate the MMP. The minimality of a log pair (X, B)
is tested by “numerical property” of the log canonical divisor. If the pair is
not minimal, then there exists an “extremal ray” by the “cone theorem”, and it
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induces a “contraction morphism” by the “basepoint-free theorem”. There are
three types of contraction morphisms: “divisorial contractions”, “small con-
tractions”, and “Mori fiber spaces”. For small contractions we need to consider
another birational map called “flip” on the “opposite side”. We will also ex-
plain new contents such as an effective version of the basepoint-free theorem
and the MMP with scaling. In addition, we describe an important extension
theorem developed from the theory of multiplier ideal sheaves.

In Chapter 3, we will give the proof of the finite generation of canonical
rings, which is the main topic of this book. To this end, we show the existence
of minimal models for varieties of general type. The “existence of flips” is
proved as a special case of the finite generation of canonical rings. Further-
more, the “termination of flips” is proved under the assumption of “general
type”, which finishes the proof of the finite generation theorem in the general
type case. In the end, we apply the semipositivity theorem of Hodge bundles,
which is also a result to be held only in characteristic 0.

The content of Chapter 2 is basically the same as [76]. This book is a sequel
of [76] and [67]. [76] summarized the results of the minimal model theory in
its early stages, and has been cited in much literature. In there, the minimal
model theory was already described in the log version and the relative version,
which is consistent with the direction of the development afterward. We are
proud to have played a certain role in producing a standard literature on the
minimal model theory. At that stage, the basepoint-free theorem and the cone
theorem were proved and the existence of minimal models was reduced to two
conjectures on flips. In subsequent developments, the existence of flips was
proved, along with the termination of flips in some special but important cases.
The purpose of Chapter 3 is to explain those developments.

Remark 0.0.3 (1) In the proof, it is necessary to consider not only Q-divisors,
but also R-divisors. However, the finite generation theorem only holds
when B is a Q-divisor.

(2) Although in our discussion we assumed that the base field is the complex
number field C, all proofs work for algebraically closed fields in charac-
teristic 0. Moreover, the results can be extended to algebraically nonclosed
fields after necessary modifications. On the other hand, it is expected that
the same conclusions (theorems in the minimal model theory and the finite
generation of canonical rings) still hold true in positive characteristics, but
the arguments in this book fail for two reasons. First, the desingularization
theorem will be used in many places, which is still an open problem in
positive characteristics; second, the vanishing theorem is a key tool in the
proofs, which has counterexamples in positive characteristics. Therefore,



5

there is almost no progress in positive characteristics. (Added in 2023: This
claim held only at the time of the publication of the Japanese version.)

(3) In this book, all results are stated in the log and relative version. If this
seems annoying to you, just take the boundary B to be 0, take S to be a
point Spec k, and replace the direct image sheaf f∗F by the space of global
sections H0(X, F), but the point of the proof will not change at all. How-
ever, as the proofs in the MMP are inductive, it is indispensable to state
the log and relative version. Also, when dealing with algebraic varieties of
nongeneral type, even if we start from an ordinary algebraic variety with-
out boundary, log pairs naturally appear from the structure of algebraic
fiber spaces.

(4) The finite generation of canonical rings is one of the main goals of the
MMP in the beginning. Even though it is proved now, the existence of
minimal models still remains open in the general case.

As prerequisites, we hope the reader has some familiarity with algebraic va-
rieties. For this, it is sufficient to have standard knowledge from the textbook
of Hartshorne ([44]). In particular, the theory of cohomologies of coherent
sheaves is a basic tool; the concept of linear systems of divisors and the cor-
respondence of Cartier divisors and invertible sheaves on a normal algebraic
variety are important, which will be explained in Chapter 1; also it is better to
have knowledge of algebraic surface theory as in [44, Chapter V]; but it is not
necessary to understand every detail in [44] because, other than Section 2.7,
this book does not deal with general schemes but only deals with irreducible
reduced separated schemes of finite type over an algebraically closed field (i.e.
algebraic varieties). The Kodaira vanishing theorem and the Hironaka desingu-
larization theorem are important theorems cited in this book (the statements of
the theorems will be given). These are indispensable tools for the discussions
in this book, but it is not necessary to understand the proofs.



1
Algebraic varieties with boundaries

A boundary of an algebraic variety is a divisor with real coefficients. In this
chapter, we introduce basic concepts of algebraic varieties with boundaries.
Using the language of numerical geometry, we define cones of curves and divi-
sors. According to the Hironaka desingularization theorem, it is possible to use
birational morphisms to make algebraic varieties smooth and divisors normal
crossing. We focus on log canonical divisors of algebraic varieties with bound-
aries, and define concepts of KLT (Kawamata log terminal) pairs and DLT (di-
visorially log terminal) pairs. The Kodaira vanishing theorem for smooth pro-
jective varieties can be extended to KLT or DLT pairs by constructing covering
spaces using the covering trick. We also discuss the classification of algebraic
varieties and singularities in lower dimensions.

1.1 Q-divisors and R-divisors

The linear equivalence class of a divisor determines a coherent sheaf which is
called a divisorial sheaf. Algebraic geometry often deals with coherent sheaves,
but this book focuses on the language of divisors. It is like dealing with differ-
ential forms themselves instead of cohomology classes of differential forms in
differential geometry.

Fix a base field k. An algebraic variety X is an irreducible reduced separated
scheme of finite type over k.

An algebraic variety X is attached with the structure sheaf OX and a local
ring OX,P at each point P. If the local ring OX,P is a regular local ring, then X is
said to be nonsingular at P. In this book, we mostly work over characteristic
0, so we will use the word smooth instead of nonsingular which sounds better.

When dim X = n, X is smooth if and only if for every closed point P on X,

6



1.1. Q-DIVISORS AND R-DIVISORS 7

the maximal ideal mP of the local ring is generated by n elements x1, . . . , xn.
Such x1, . . . , xn is called a regular system of parameters or local coordinates.
When k = C, this is equivalent to saying that the set of closed points of X
forms a complex manifold.

The set of all smooth points Reg(X) of an algebraic variety X is a nonempty
open subset of X, and its complement set Sing(X) = X \ Reg(X), which is a
proper closed subset of X, is called the singular locus of X.

An algebraic variety X is said to be normal if the local ring at every point
is an integrally closed domain. Since normal local rings of dimension 1 are
regular, the singular locus of a normal algebraic variety is a closed subset of
codimension at least 2. That is, it is the closure of several points with codimen-
sions at least 2.

Every algebraic variety X can be easily modified into a normal one: There is
a unique finite morphism f : Xν → X from a normal algebraic variety which
is isomorphic over Reg(X). This is called the normalization of X.

Normality can be checked by Serre’s criterion ([94]):

Theorem 1.1.1 An algebraic variety X is normal if and only if the following
two conditions are satisfied:

(1) (R1) Its singular locus is a closed subset of codimension at least 2.
(2) (S 2) For any open subset U and any closed subset Z of codimension at

least 2, the restriction map Γ(U,OX)→ Γ(U \ Z,OX) is bijective.

From now on, we will always assume that X is a normal algebraic variety.
A prime divisor on X is a closed subvariety of codimension 1. A divisor is a
formal finite sum of prime divisors D =

∑
diDi. Unless otherwise stated, the

coefficients di are integers, and Di are distinct prime divisors. In other words,
divisors are elements in the free Abelian group Z1(X) generated by all prime
divisors on X.

D is said to be effective if all coefficients di are nonnegative. For two divisors
D,D′, we write the inequality D ≥ D′ if D − D′ is effective. D is said to be
reduced if di = 1 for all i.

Let D be a prime divisor on a normal algebraic variety X and let P be the
generic point of D, then the local ring OX,P is a discrete valuation ring with the
function field k(X) as its quotient field.

For a rational function h ∈ k(X)∗, its divisor div(h) is defined as

div(h) =
∑

vD(h)D.

Here the sum runs over all prime divisors D, and νD is the discrete valuation
of the local ring at the generic point of D. It is known that the right-hand side
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is a finite sum. Any divisor defined by a nonzero rational function is called a
principal divisor.

For a divisor D, the corresponding divisorial sheaf OX(D) is defined as the
following: for any open subset U of X,

Γ(U,OX(D)) = {h ∈ k(X)∗ | div(h)|U + D|U ≥ 0} ∪ {0}.

Also we define

H0(X,D) = H0(X,OX(D)).

If a nonzero global section s of OX(D) corresponds to a rational function h, we
define the divisor of s by

div(s) = div(h) + D,

which is effective. Generally we can also define the divisor div(s) of a rational
section s of OX(D) by the corresponding rational function h as the above equa-
tion, but in this case div(s) is not necessarily effective. For example, if we take
s1 to be the rational section corresponding to the rational function h = 1, then
the corresponding divisor is just D.

There is an isomorphism (OX(D))η � OX,η on the generic point η of X.
Moreover, by taking the dual, we have

OX(D)∗ := Hom(OX(D),OX) � OX(−D),

hence the divisorial sheaf OX(D) is a reflexive sheaf of rank one. Here a reflex-
ive sheaf is a coherent sheaf which is isomorphic to its double dual: F∗∗ � F.

A divisor D is called a Cartier divisor if its divisorial sheaf OX(D) is invert-
ible. In other words, this is to say that, in a neighborhood of each point P, this
divisor is a principal divisor defined by some rational function depending on
P. To distinguish from Cartier divisors, we call a divisor a Weil divisor or an
integral divisor. Denote by Div(X) the set of all Cartier divisors. There is an
inclusion Div(X) ⊂ Z1(X), and they coincide when X is smooth.

Two divisors D,D′ on an algebraic variety X are said to be linearly equiva-
lent, and denoted by D ∼ D′, if D−D′ is a principal divisor. Note that D ∼ D′ if
and only if OX(D) � OX(D′). In other words, divisorial sheaves can be viewed
as linear equivalence classes of divisors. Here D,D′ are not necessarily Cartier
divisors.

The relative version is as follows. Given a morphism f : X → S between
algebraic varieties, two divisors D,D′ on X are said to be relatively linearly
equivalent over S , and denoted by D ∼S D′, if there exists an open covering
{S i} of S such that D|S i ∼ D′|S i after restriction over each S i. Here we remark
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that in some other references, D,D′ are defined to be relatively linearly equiv-
alent over S if there exists a Cartier divisor B on S such that D ∼ D′ + f ∗B. In
general these two definitions are not the same and the assumption in our defi-
nition is weaker. But under certain conditions, for example, when f is proper
surjective with connected geometric fibers, it is easy to see that these two def-
initions coincide.

A closed subset B on a smooth algebraic variety X is called a normal cross-
ing divisor if at each closed point P there is a regular system of parameters
z1, . . . , zn of the local ring OX,P and an integer 1 ≤ r ≤ n such that the defining
equation of B is of the form z1 · · · zr = 0 locally around P. In this case, every
irreducible component of B is smooth. Also, the union of several irreducible
components of B is again a normal crossing divisor.

For an algebraic variety X and a closed subset B, the set of points at which
X is smooth and B is a normal crossing divisor is an open subset of X, which
is denoted by Reg(X, B). The complement set Sing(X, B) = X \ Reg(X, B) is
called the singular locus of (X, B).

Remark 1.1.2 A normal crossing divisor defined above is also called a simple
normal crossing divisor in many references.

If X is a complex algebraic manifold and z1, . . . , zn are regular local coordi-
nates on the complex manifold associated to X, then a normal crossing divisor
B satisfying the same condition as above is not necessarily a simple normal
crossing divisor in the algebraic setting. In fact, irreducible components of B
may have self-intersection. So, we use the term “simple” in the algebraic set-
ting in order to distinguish with the analytic setting.

For example, in the affine plane C2 with coordinates x, y, the closed subset
defined by the equation x2 + y2 + y3 = 0 is irreducible but has self-intersection
at the point (0, 0), therefore it is a normal crossing divisor on the complex
manifold, but not a simple normal crossing divisor.

One feature of this book is to consider divisors which do not necessarily
have integral coefficients. If the coefficients di in D =

∑
diDi are rational num-

bers (respectively, real numbers), then D is called a Q-divisor (respectively,
an R-divisor). Note that a Q-divisor is also an R-divisor. Those are elements
in Z1(X) ⊗ Q or Z1(X) ⊗ R, respectively, and these vector spaces are usually
denoted by Z1(X)Q and Z1(X)R. We will see soon that the range of discussions
is expanded widely by considering Q-divisors and R-divisors.

Let D =
∑

diDi be an R-divisor on X, where Di are distinct prime divisors.
D is said to be effective if all coefficients di are nonnegative. For two R-divisors
D,D′, we write the inequality D ≥ D′ if D − D′ is effective. D is said to be
reduced if di = 1 for all i. The support of D is the union of all Di with di , 0,
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and is denoted by Supp(D). Set D+ =
∑

di>0 diDi and D− =
∑

di<0(−di)Di, then
D+ and D− are effective R-divisors with no common irreducible component
and the equality D = D+ − D− holds. D+,D− are called the positive part and
the negative part of D, respectively.

For two R-divisors D =
∑

i diDi and D′ =
∑

i d′i Di, define their maximum
to be max{D,D′} =

∑
i max{di, d′i }Di. For example, D+ = max{D, 0}, D− =

max{−D, 0}. Similarly we can define min{D,D′} =
∑

i min{di, d′i }Di.
The round up (respectively, round down) of an R-divisor is defined via the

round up (respectively, round down) of coefficients:

⌜D⌝ =
∑

⌜di⌝Di, ⌞D⌟ =
∑

⌞di⌟Di.

A Q-divisor (respectively, an R-divisor) is said to be a Q-Cartier divisor
(respectively, an R-Cartier divisor) if it is an element of Div(X) ⊗ Q (respec-
tively, Div(X) ⊗ R). Note that if a Q-divisor is an R-Cartier divisor, then it
is automatically a Q-Cartier divisor. For a Q-Cartier divisor D, there exists a
positive integer m such that mD is a Cartier divisor. However, in general there
might not be a nonzero multiple to make an R-Cartier divisor Cartier. X is said
to be factorial (respectively, Q-factorial), if all Weil divisors on X are Cartier
divisors (respectively, Q-Cartier divisors).

Two R-divisors D,D′ are said to be R-linearly equivalent, denoted by D ∼R

D′, if D − D′ can be written as an R-linear combination of principal divisors.
The relative version and Q-linear equivalence can be defined similarly.

Remark 1.1.3 Considering R-divisors is now essential to the development
of the minimal model theory. This book can be viewed as a revised version
of [76], in which only Q-divisors are treated. Later in [61], R-divisors already
played a central role. The divisorial Zariski decomposition (which is called
the sectional decomposition in [61]) is defined via limits of Q-divisors, so R-
divisors appear naturally. Moreover, it is proved in [60] that the existence of
Zariski decomposition (in a good sense, not only in codimension 1) into R-
divisors implies the finite generation of canonical rings.

Example 1.1.4 We give examples for a Q-Cartier Weil divisor which is not
Cartier and a Weil divisor which is not Q-Cartier.

(1) Let X be the hypersurface defined by the equation xy = z2 in the 3-
dimensional affine space A3 with coordinates x, y, z, which is an algebraic
surface with an ordinary double point at the origin (0, 0, 0). The line D
defined by the equation x = z = 0 is a prime divisor on X. At lease two
equations are needed to define D in X, so D is not a Cartier divisor. On the
other hand, div(x) = 2D on X, so D is Q-Cartier.
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(2) Let X be the hypersurface defined by the equation xy = zw in A4 with
coordinates x, y, z,w, which is a 3-fold with an ordinary double point at
the origin (0, 0, 0, 0). The 2-dimensional linear subspace D1 defined by the
equation x = z = 0 is a prime divisor on X, which is not a Q-Cartier
divisor (see Example 1.2.4 for the reason). It is the same for D2 defined by
x = w = 0. However, the sum D1 + D2 = div(x) is a Cartier divisor. See
Example 2.5.4(2) for related discussions.

1.2 Rational maps and birational maps

A rational map f : X 99K Y between algebraic varieties is a morphism f :
U → Y from a nonempty open subset U of X. Since f might not be defined
on the whole X, such a map is denoted by a dashed arrow in this book. If there
is another nonempty open subset U′ and a morphism f ′ : U′ → Y which
coincides with f on U ∩U′, then we consider f = f ′ as the same rational map.
The domain of definition of a rational map f is defined to be the largest U such
that there is a morphism f : U → Y representing f .

The graph Γ f of a rational map f : X 99K Y is defined to be the closure of
the graph Γ ⊂ U × Y of the morphism f : U → Y in X × Y .

A rational map f : X 99K Y is said to be a birational map if there exist
nonempty open subsets U,V on X,Y such that f induces an isomorphism U �
V . In this situation, the inverse map f −1 : Y 99K X is also a birational map.

A morphism f : X → Y is said to be a birational morphism if it is a bira-
tional map. If U is the largest open subset of X on which f induces an isomor-
phism U � V , then Exc( f ) = X \ U is called the exceptional set of f . In this
situation, V is the domain of definition of f −1. A prime divisor contained in
the exceptional set is called an exceptional divisor over Y or an f -exceptional
divisor. Generally, a divisor whose support is contained in the exceptional set
is also called an exceptional divisor over Y or an f -exceptional divisor.

X and Y are said to be birationally equivalent if there exists a birational map
f : X 99K Y . In this case, we also say that one is a birational model to the
other.

For a morphism f : Y → X and a closed subset D of X, the inverse im-
age f −1(D) is a closed subset of Y . In this book, f −1(D) only means the set-
theoretic inverse image, and we do not consider its scheme structure. However,
for a divisor we can define its direct image and inverse image as the following.

First, we define the inverse image or pullback of a Cartier divisor. For a
morphism f : Y → X and an invertible sheaf L on X, we can always define
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the pullback f ∗L which is an invertible sheaf on Y . On the other hand, for a
Cartier divisor D on X, we can define its pullback only if the image f (Y) is not
contained in the support of D. In this situation, the pullback f ∗D is defined by
pulling back the local equation of D. If D is given by a rational section s of the
invertible sheaf OX(D) by div(s) = D, then the pullback f ∗D is given by the
rational section f ∗s of the invertible sheaf f ∗OX(D).

For an R-Cartier divisor D, if we write it as an R-linear combination of
Cartier divisors D =

∑
diDi, then we can define the pullback by f ∗D =∑

di f ∗Di. Here Di are Cartier divisors, not prime divisors. In other words,
the pullback of R-Cartier divisors can be defined by extending the coefficients
of the pullback map f ∗ : Div(X) → Div(Y) of Cartier divisors. Note that this
definition does not depend on the expression of D. The pullback f ∗D is also
called the total transform of D.

On the other hand, we cannot define the pullback for a general divisor which
is not an R-Cartier divisor. However, if the morphism f : Y → X is a birational
map, we can define another form of “pullback” (the strict transform by the
inverse map f −1) as the following.

Let f : X 99K Y be a birational map and let D be a prime divisor on X.
For the domain of definition U, if D ∩ U , ∅, then the image ( f |U)(D ∩ U)
is a locally closed subvariety of Y . If its closure is a prime divisor on Y , then
we denote the closure by f∗D; if D ∩ U = ∅ or the image ( f |U)(D ∩ U) has
codimension at least 2, then we set f∗D = 0. Here f∗D is called the strict
transform or birational transform of D. Generally for R-divisors, the definition
can be extended by linearity f∗(

∑
diDi) =

∑
di f∗(Di) and we consider the

linear map f∗ : Z1(X)R → Z1(Y)R by extending the coefficients.

Example 1.2.1 For a birational projective morphism f : Y → X and any
prime divisor D on X, the strict transform f −1

∗ D on Y is again a prime divisor,
which is not 0.

In fact, the inverse map f −1 is well defined at the generic point of D, and
there is no prime divisor contracted by f −1, hence the strict transform is a
prime divisor.

Remark 1.2.2 A birational map f : X 99K Y between normal algebraic
varieties induces an isomorphism between function fields k(X) � k(Y). For a
prime divisor D on X whose strict transform f∗D is nonzero, this isomorphism
identifies the local rings at generic points of D and f∗D.

When we consider birationally equivalent algebraic varieties as a whole,
we identify the divisors defining the same discrete valuation ring, which is
equivalent to identifying prime divisors connected by strict transforms.
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Similarly, for a subvariety Z of higher codimension, we can define the strict
transform f∗Z in a similar way: If Z ∩ U , ∅ and f |U induces an isomorphism
at the generic point of Z, then we define f∗Z to be the closure of ( f |U)(Z ∩ U)
in Y . We refer to Section 1.4 for the definition in general case.

A birational map f : X 99K Y is said to be surjective in codimension 1 if
the map f∗ : Z1(X) → Z1(Y) is surjective, that is, for any prime divisor E ⊂ Y
there is a prime divisor D on X such that E = f∗D. Moreover, it is said to be
isomorphic in codimension 1 if f∗ : Z1(X) → Z1(Y) is bijective. The minimal
model theory mainly deals with the phenomenon in codimension 1, so these
maps play important roles.

Example 1.2.3 A classical example of biratonal maps is a blowup. In this
book, blowing up along a smooth center is important. A blowup is obtained by
gluing the following local construction.

(1) Define the rational map f : X = An 99K Y = Pr−1 from the n-dimensional
affine space to a projective space by f (x1, . . . , xn) = [x1 : · · · : xr]. Let Z
be the linear subspace of X defined by x1 = · · · = xr = 0, then the domain
of definition of f is U = X \ Z.

The graph X′ ⊂ X × Y of f is defined by xiy j = x jyi (1 ≤ i, j ≤ r) where
y1, . . . , yr are the homogeneous coordinates of Y . The first projection p :
X′ → X is the blowup along center Z. E = p−1(Z) is the exceptional
set of the birational morphism p, which is a prime divisor. p induces an
isomorphism X′ \ E → X \ Z. Moreover, E � Z × Pr−1.

In this case, p is surjective in codimension 1, but p−1 is not.
(2) Let X1 be a subvariety of X which is not contained in Z. The strict trans-

form X′1 = p−1
∗ (X1) of X1 is the closure of p−1(X1 \ Z). In this case,

p1 = p|X′1 : X′1 → X1 is the blowup of X1 along center Z ∩ X1. In par-
ticular, the case Z ⊂ X1 is important. If X1 ⊂ Z, we can think X′1 = ∅, in
other words, the variety disappears after the blowing up.

If X1 1 Z, p1 is a birational morphism. However, the exceptional set
Exc(p1) does not necessarily coincide with E ∩ X′1. For example, consider
n = 4, r = 2, X1 ⊂ A4 is the subvariety defined by the equation x1x3 +

x2x4 = 0. This is the situation in Example 1.1.4(2). In this case, Z ⊂ X1,
the exceptional set C of p1 : X′1 → X1 is isomorphic to P1, and p1(C) is
the origin. Hence p1 is isomorphic in codimension 1, and so is p−1

1 .

Example 1.2.4 Consider the situations in Example 1.1.4.

(1) For a Q-Cartier Weil divisor which is not Cartier, the pullback might not
be a Weil divisor but only a Q-divisor.

The blowup f : X′ → X of X along the origin Z = (0, 0, 0) as the center



14 CHAPTER 1. ALGEBRAIC VARIETIES WITH BOUNDARIES

gives a resolution of singularity. The exceptional set C ⊂ X′ is isomorphic
to P1. We have f ∗D = f −1

∗ D + 1
2C.

The projection formula ( f ∗D ·C) = (D · f∗C) stated later (before Propo-
sition 1.4.3) can be confirmed by the following facts: ( f −1

∗ D · C) = 1,
(C2) = −2, and f∗C = 0.

(2) Non-Q-Cartier divisors cannot be pulled back according to the projection
formula.

Consider the blowup p1 : X′1 → X1 at the end of Example 1.2.3(2). We
change the notation by f : X′ → X. Then X′ is smooth. As the excep-
tional set C ⊂ X′ is isomorphic to P1 which is only 1-dimensional, p1 is
isomorphic in codimension 1.

If the pullbacks f ∗D1, f ∗D2 of D1,D2 exist, they would have to coincide
with the strict transforms f −1

∗ D1, f −1
∗ D2 since there are no other prime di-

visors in the supports of f −1(D1), f −1(D2). However, intersecting with C,
we have ( f −1

∗ D1 ·C) = −1 and ( f −1
∗ D2 ·C) = 1. Since f∗C = 0, this violates

the projection formula ( f ∗D ·C) = (D · f∗C) which holds for pullbacks.

A coherent sheaf F on an algebraic variety X is said to be generated by
global sections if the natural homomorphism H0(X, F)⊗OX → F is surjective.

For a Cartier divisor D, its complete linear system is defined by |D| = {D′ |
D ∼ D′ ≥ 0}, and its base locus is defined by Bs |D| =

⋂
D′∈|D| Supp(D′). When

Bs |D| = ∅, |D| is said to be free, which is equivalent to that the corresponding
coherent sheaf OX(D) is generated by global sections.

D is also said to be free if |D| is free, and D is said to be semi-ample if there
exists a positive integer m such that mD is free.

More generally, a finite-dimensional linear subspace V ⊂ H0(X,D) corre-
sponds to a (not necessarily complete) linear system Λ = {div(s) | s ∈ V \ {0}}.
As an algebraic variety, Λ is isomorphic to the projective space P(V∗) := (V \
{0})/k∗. The base locus of Λ is defined similarly by BsΛ =

⋂
D′∈Λ Supp(D′),

and Λ is said to be free if BsΛ is empty, which is equivalent to that the natural
homomorphism V ⊗ OX → OX(D) is surjective.

The fixed part of a linear system Λ is the effective divisor F = minD′∈Λ D′.
In other words, F is the maximal divisor such that F ≤ D′ for all D′ ∈ Λ. In
this case, the image of the natural injection H0(X,D−F)→ H0(X,D) contains
V . Being viewed as a subspace of H0(X,D − F), V corresponds to the linear
systemΛ′ = {D′−F | D′ ∈ Λ}, which is called the movable part ofΛ. We write
Λ = Λ′ + F. By definition, the support of F coincides with the codimension 1
components of BsΛ.

A nonempty linear system Λ induces a rational map ΦΛ : X 99K P(V) :=
(V∗ \ {0})/k∗ to its dual projective space. The domain of definition of ΦΛ
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contains U = X \ BsΛ; for P ∈ U, ΦΛ(P) is the point in P(V) correspond-
ing to the hyperplane {s ∈ V | s(P) = 0} of V . In other words, if we take
a basis s1, s2, . . . , sm ∈ V , then we can define ΦΛ(P) = [s1(P) : s2(P) :
· · · : sm(P)] ∈ P(V). Note that here si(P) is not a well-defined value, but
[s1(P) : s2(P) : · · · : sm(P)] is a well-defined point as long as P ∈ U. In
particular, when Λ is free, ΦΛ is a morphism. The rational map given by the
movable part of a linear system coincides with the rational map given by the
original linear system.

In general, for a morphism f : Y → X and a linear system Λ on X, the
pullback is defined by f ∗Λ = { f ∗D′ | D′ ∈ Λ}. If there is a morphism to
a projective space, a free linear system can be obtained by pulling back the
linear system consisting of all hyperplanes.

The base locus of a linear system can be removed in the following sense:

Proposition 1.2.5 Let Λ be a linear system of Cartier divisors on a normal
algebraic variety X. Then there exists a birational projective morphism f :
Y → X from a normal algebraic variety Y such that the pullback has the form
f ∗Λ = Λ1 + F, where F is the fixed part of f ∗Λ and the linear system Λ1 is
free.

Proof Let V ⊂ H0(X,D) be the linear subspace corresponding to Λ. The
image of the natural map V ⊗ OX → OX(D) can be written as IOX(D), where
I is an ideal sheaf on X. Take f to be the normalization of the blowup along
I, then the inverse image ideal sheaf IOY is an invertible sheaf on Y . Then
IOY ( f ∗D) is the image of the natural map V ⊗ OY → OY ( f ∗D), so it can be
written as the form OY ( f ∗D−F) for some effective divisor F. Since the natural
map V ⊗ OY → OY ( f ∗D − F) is surjective, the linear system Λ1 = f ∗Λ − F is
free and F is the fixed part of f ∗Λ. □

For an R-divisor D on a normal proper algebraic variety X, the set of global
sections H0(X, ⌞D⌟) is a finite-dimensional k-linear space. Considering all pos-
itive integer multiples mD of D and taking a direct sum, we define the section
ring of D by

R(X,D) =
∞⊕

m=0

H0(X, ⌞mD⌟).

Here m runs over all nonnegative integers. It admits a graded k-algebra struc-
ture defined by

H0(X, ⌞mD⌟) ⊗ H0(X, ⌞m′D⌟)→ H0(X, ⌞(m + m′)D⌟)
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since

⌞mD⌟ + ⌞m′D⌟ ≤ ⌞(m + m′)D⌟.

The Iitaka–Kodaira dimension κ(X,D) of an R-divisor can be defined by the
transcendental degree of the section ring:

κ(X,D) =

tr.degk R(X,D) − 1 if R(X,D) , k;

−∞ otherwise.

The Iitaka–Kodaira dimension takes value among −∞, 0, 1, . . . , n = dim X. In
particular, when it takes the maximal value, that is, when κ(X,D) = dim X, D
is said to be big. For example, ample divisors are big.

If R(X,D) = k, that is, H0(X, ⌞mD⌟) = 0 for any m > 0, then κ(X,D) is
defined to be −∞ instead of −1. The reason is the following lemma:

Lemma 1.2.6 ([47, Theorem 10.2], [116, Theorem II.3.7]) There exist pos-
itive real numbers c1, c2 such that for any sufficiently large and sufficiently
divisible integer m,

c1mκ(X,D) ≤ dim H0(X, ⌞mD⌟) ≤ c2mκ(X,D).

Remark 1.2.7 The canonical ring is the section ring of the canonical divisor,
which is proved to be finitely generated for smooth projective varieties ([16]),
and one of the main goals of this book is to explain the proof. However, in gen-
eral the section ring R(X,D) of a divisor D is not necessarily finitely generated.
There exist examples such that the anti-canonical ring (i.e. the section ring of
the anti-canonical divisor −KX) of a 2-dimensional variety is not finitely gen-
erated ([125], see also Example 2.4.8). Also, the anti-canonical ring R(X,−KX)
is not a birational invariant.

The relative version is as follows. Let f : X → S be a proper morphism from
a normal algebraic variety. The relative global sections of a coherent sheaf F
on X are given by the direct image sheaf f∗F. F is said to be generated by
relative global sections if the natural homomorphism f ∗ f∗F → F is surjective.

A Cartier divisor D on X is said to be relatively free if the corresponding
coherent sheaf OX(D) is generated by relative global sections. D is said to be
relatively semi-ample if there exists a positive integer m such that the multiple
mD is relatively free.

For an R-divisor D on X, the direct image sheaf f∗(OX(⌞D⌟)) is a coherent
OS -module. Considering all positive integer multiples mD of D and taking a
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direct sum, we define the relative section ring of D by

R(X/S ,D) =
∞⊕

m=0

f∗(OX(⌞mD⌟)),

which is a graded OS -algebra.
The relative Iitaka–Kodaira dimension is defined by the Iitaka–Kodaira di-

mension of the generic fiber. Here we always assume that f is surjective with
irreducible geometric generic fiber, and define

κ(X/S ,D) = κ(Xη̄,D|Xη̄ ).

Here Xη is the generic fiber which is the fiber of f over the generic point η of
S , and Xη̄ is the geometric generic fiber which is the base change of Xη to the
algebraic closure of k(S ). D is said to be relatively big or f -big if κ(X/S ,D) =
dim Xη̄. In Section 1.5.1 we will give an equivalent definition for (relative)
bigness using Kodaira’s lemma (Corollary 1.5.10).

1.3 Canonical divisors

A normal algebraic variety X is automatically associated with a Weil divisor
KX which is called the canonical divisor. KX is the key player of this book. The
canonical ring is the section ring of the canonical divisor. The minimal model
program (MMP) is a sequence of operations that “minimizes” the canonical
divisor.

As X is normal, the singular locus Sing(X) is a closed subset of X of codi-
mension at least 2. Since the complement set U = X \ Sing(X) is smooth,
the sheaf of differentials Ω1

X/k is a locally free sheaf of rank n = dim X over
U. The determinant ωU = det(Ω1

X/k |U) is an invertible sheaf on U. Taking a
nonzero rational section θU of ωU , we get a canonical divisor KU = div(θU) of
U. Since X \U contains no prime divisors of X, the restriction map of divisors
Z1(X) → Z1(U) is bijective. Denote by KX ∈ Z1(X) the corresponding divisor
of KU ∈ Z1(U), which is called the canonical divisor of X.

Remark 1.3.1 (1) By construction, KX depends on the choice of θU . How-
ever, traditionally our discussions proceed as if the canonical divisor is a
fixed one. Nevertheless, in this book, all discussions are independent of
the choice of θU .

On the other hand, the corresponding divisorial sheaf ωX = OX(KX) is
uniquely determined. It is called the canonical sheaf. The canonical sheaf
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ωX is a natural subject. However, since we consider the pair with an R-
divisor called the “boundary divisor”, the canonical divisor is easier to
handle.

(2) In this book, the following situation appears frequently: Let f : Y → X
be a birational morphism between normal algebraic varieties and let B be
an R-divisor on X such that KX + B is R-Cartier. Consider the pullback
f ∗(KX+B). By using the isomorphism between function fields f ∗ : k(X)→
k(Y), we can take the same rational differential form θ which defines KX

and KY (in particular, KX = f∗KY ), then the R-divisor C can be defined
by the equation f ∗(KX + B) = KY + C. Here C is uniquely determined as
the sum of the strict transform f −1

∗ B and an R-divisor supported on the
exceptional set of f .

We will discuss general boundary divisors later, here we first consider the
case when X is a smooth algebraic variety and B =

∑
Bi is a normal crossing

divisor. Denote n = dim X. The sheaf of differentials Ω1
X(log B) with at most

logarithmic poles along B is naturally defined as a locally free sheaf of rank n
with the following property. For any closed point P ∈ X, choose a regular sys-
tem of parameters x1, . . . , xn of the local ring OX,P such that the local equation
of B is x1 · · · xr = 0 for some integer r. In this case, the stalk Ω1

X(log B)P is a
free OX,P-module with basis dx1/x1, . . . , dxr/xr, dxr+1, . . . , dxn.

The determinantΩn
X(log B) ofΩ1

X(log B) is isomorphic toOX(KX+B). There-
fore, KX + B is called the logarithmic canonical divisor or just log canonical
divisor. This is the origin of the terminology “log”.

In general, a log canonical divisor KX + B is a sum of the canonical divisor
and an effective R-divisor. Usually certain conditions on singularities will be
imposed on the pair (X, B), which will be discussed in Sections 1.10 and 1.11.
The log canonical ring is defined to be R(X,KX + B), and the log Kodaira
dimension is defined to be κ(X,KX + B).

Let X be a smooth projective variety. R(X) = R(X,KX) is the canonical ring
of X. Pm(X) = dim H0(X,mKX) is called the m-genus, which is an important bi-
rational invariant having been studied for a long time. Its growth order κ(X,KX)
is called the Kodaira dimension, sometimes simply denoted by κ(X). X is said
to be of general type if KX is big.

When working with induction on dimensions, one key is the adjunction for-
mula.

Let D be a smooth prime divisor on a smooth algebraic variety X. Then the
log canonical divisor and the canonical divisor of the prime divisor satisfy the
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following adjunction formula:

(KX + D)|D = KD.

In this formula, KX |D and D|D have no natural meaning, but the adjunction
itself is given by the map

ResD : Ωn
X(log D)→ Ωn−1

D

which is induced by the residue map

ResD : Ω1
X(log D)→ OD.

The residue map is a natural map which is independent of the choice of coor-
dinates. Therefore, the adjunction formula is also a natural formula. Note that
this adjunction formula still holds if D is normal and D ∩ Sing(X) has codi-
mension at least 2 in D, since we can first apply the above adjunction formula
to D \ Sing(X) ⊂ X \ Sing(X), then extend it to D by the normality.

When D is not a prime divisor but a normal crossing divisor, if we take an
irreducible component D1 of D and write E = (D − D1)|D1 , then we have the
adjunction formula

(KX + D)|D1 = KD1 + E.

Here the restriction E is well defined since the intersection of D − D1 and D1

is of codimension 1 on D1.
More generally, we can consider the adjunction formula as a relation be-

tween canonical divisors of relevant varieties. For example, consider a surjec-
tive finite morphism f : Y → X between smooth algebraic varieties, which is a
ramified cover whose ramification locus is a smooth prime divisor D on X with
ramification index m. The set-theoretic inverse image E = f −1(D) is a smooth
prime divisor on Y and f ∗D = mE. In this case, the ramification formula or the
adjunction formula with respect to the ramification is the following:

KY = f ∗KX + (m − 1)E.

If written as

KY = f ∗(KX +
m − 1

m
D),

then it looks like the adjunction formula for subvarieties. The latter formula is
the origin of considering log canonical divisors with boundary divisors with
rational coefficients. Also, if you write

KY + E = f ∗(KX + D),

you will find that “ramification is killed by log setting”.
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As another example of the adjunction formula, consider the blowup of an
n-dimensional smooth algebraic variety X along an r-codimensional smooth
subvariety Z. The blowup f : Y → X is a birational morphism with excep-
tional set E, which is a prime divisor isomorphic to a Pr−1-bundle over Z. The
changing of canonical divisors is given by

KY = f ∗KX + (r − 1)E.

As shown in the following example, if X is a singular normal algebraic va-
riety and D is a prime divisor on X intersecting Sing(X) such that D∩ Sing(X)
contains an irreducible component of codimension 1 on D, then the singu-
larities contribute to the adjunction formula. This phenomenon is called the
subadjunction formula, which is very important.

Example 1.3.2 Let X be the quadric surface defined by the equation xy+z2 =

0 in the projective space P3 with homogeneous coordinates x, y, z,w. X has
a singularity at [0 : 0 : 0 : 1]. Let H be a hyperplane section of X, then
KX ∼ −2H.

The projective line L defined by x = z = 0 is a prime divisor on X. We
have div(x) = 2L on X, hence L ∼Q

1
2 H. Therefore, (KX + L)|L ∼Q −

3
2 H|L

since L|L ∼Q
1
2 H|L. On the other hand, KL ∼ −2H|L. Therefore, we have the

subadjunction formula (KX + L)|L = KL +
1
2 H|L (see Remark 1.11.14).

1.4 Intersection numbers and numerical geometry

Problems in algebraic geometry are equivalent to solving systems of polyno-
mial equations, which are highly nonlinear. Numerical geometry attempts to
linearize those problems using intersection numbers. In the following two sec-
tions, we explain basic definitions in numerical geometry. In Chapter 2, we
will explain the basepoint-free theorem and the cone theorem which are im-
portant theorems in numerical geometry. The explanation here is according to
Kleiman ([80]). We refer to the original paper for the proof of the ampleness
criterion.

All definitions here will be for a proper morphism f : X → S between
algebraic varieties over a field k. In the case S = Spec k, the definitions are
for a proper algebraic variety X. We use words “relative” or “over S ” for all
definitions in this section. In the case S = Spec k, those words can be removed.
For simplicity, one can just consider S = Spec k and ignore the word “relative”,
the context will be almost the same. However, it is indispensable to consider
the relative version in applications.
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In the following definition, k is an arbitrary field, and X is of finite type
over k, not necessarily irreducible or reduced. However, in this book when
considering Cartier divisors, X is always assumed to be a normal algebraic
variety.

A closed subvariety Z on X is called a relative subvariety over S if f (Z) is a
closed point of S . In particular, if dim Z = 1, it is called a relative curve over
S . Denote dim Z = t and take t invertible sheaves L1, . . . , Lt on X. Then the
intersection number (L1 · · · Lt · Z) is defined as the coefficient of the following
polynomial ([80, p. 296])

χ(Z, L⊗m1
1 ⊗ · · · ⊗ L⊗mt

t ⊗ OZ) = (L1 · · · Lt · Z)m1 · · ·mt + (other terms).

Here m1, . . . ,mt are variables with integer values, and

χ(Z, •) =
∑

(−1)p dimk Hp(Z, •)

is the Euler–Poincaré characteristic. Here X itself is not necessarily proper,
but Z is proper as f (Z) is a point, hence the cohomology groups are finite-
dimensional.

The intersection number (L1 · · · Lt · Z) takes integer value, and it is a sym-
metric t-linear form with respect to L1, . . . , Lt ([80, p. 296]). That is, it is inde-
pendent of the order of Li and

((L⊗n1
1 ⊗ L′⊗n′1

1 ) · · · Lt · Z) = n1(L1 · · · Lt · Z) + n′1(L′1 · · · Lt · Z).

For Cartier divisors D1, . . . ,Dt, define

(D1 · · ·Dt · Z) = (OX(D1) · · · OX(Dt) · Z).

In particular, when dim Z = 1, taking ν : Zν → Z to be the normalization
where Zν is a smooth projective curve, then by the Riemann–Roch theorem,

(D1 · Z) = degZν (ν
∗(OX(D1)|Z)).

When Z = X, we simply write (D1 · · ·Dt) = (D1 · · ·Dt ·X). If, moreover, all Di

are the same D, then write (D1 · · ·Dt) = (Dt).
By multi-linearity, the definition of (D1 · · ·Dt ·Z) can be extended to the case

when Di are R-Cartier divisors, which takes value in real numbers.

Remark 1.4.1 (1) Here we use Euler–Poincaré characteristic to give a sim-
ple definition for intersection numbers, but the correct geometric definition
of intersection numbers is by adding up local intersection numbers to get
the global intersection number. This is how the number of “intersection
points” is defined originally. Using the geometric definition, for effective
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R-Cartier divisors Di and a t-dimensional relative subvariety Z, if the in-
tersection

⋂t
i=1 Supp(Di) ∩ Z is nonempty and of dimension 0, then the

intersection number is positive, and if the intersection is empty, then the
intersection number is 0. These two definitions of intersection numbers
coincide.

(2) By using the definition of intersection numbers of divisorial sheaves, we
can define the self-intersection number of a divisor, which seems to be
a weird name. For example, for an effective Cartier divisor D on an n-
dimensional algebraic variety, the self-intersection number (Dn) can be
either positive or nonpositive.

(3) In this book, a curve is an irreducible reduced projective variety of di-
mension 1. The intersection number considered in this book is mainly the
intersection number of a Cartier divisor with a curve.

Among all curves, rational curve plays a very important role in the min-
imal model theory (see Sections 2.7 and 2.8). A rational curve is a curve
whose normalization is isomorphic to P1. In general a rational curve might
have singularities and not necessarily be isomorphic to P1 itself.

Example 1.4.2 The intersection number of a divisor and a curve can be de-
fined if this divisor is a Q-Cartier divisor. However, the intersection number is
not necessarily an integer if the divisor is not Cartier. In general it cannot be
defined if the divisor is not Q-Cartier.

Consider X, as in Example 1.1.4 or 1.2.4, and let X̄ be its compactification
in the projective space P3 or P4.

(1) X̄ is defined by the equation xy = z2 in P3 with homogeneous coordinates
u, x, y, z. The compactification D̄ of D is a prime divisor defined by x =
z = 0. In this case, (D̄2) = 1

2 .
In fact, take a plane H̄, then H̄|X̄ ∼ div(x) = 2D̄ and (H̄ · D̄) = 1.

(2) X̄ is defined by the equation xy = zw in P4 with homogeneous coordinates
u, x, y, z,w. The compactifications D̄1, D̄2 of D1,D2 are prime divisors de-
fined by x = z = 0, x = w = 0. Take the curve C defined by y = z = w = 0.
D̄1+D̄2 is a Cartier divisor and ((D̄1+D̄2)·C) = 1. The blowup f1 : Y1 → X̄
is isomorphic in codimension 1. If intersection numbers (D̄i · C) (i = 1, 2)
could be defined, by the projection formula stated later (before Proposi-
tion 1.4.3), (D̄i ·C) = ( f −1

1∗ D̄i · f −1
1∗ C). The right-hand side can be calculated

to be 1, 0 for i = 1, 2. This is absurd since the relations between D̄1, D̄2

and C are symmetric.

Two invertible sheaves L, L′ are said to be relatively numerically equivalent,
denoted by L ≡S L′, if (L · C) = (L′ · C) for any relative curve C. When the
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base is clear, we just write L ≡ L′. The Abelian group consisting of isomor-
phism classes of all invertible sheaves is denoted by Pic(X) and the subgroup
consisting of all invertible sheaves relatively numerically equivalent to OX is
denoted by Picτ(X/S ). The quotient group Pic(X)/Picτ(X/S ) is a finitely gen-
erated Abelian group ([80, p. 323]), which is called the relative Neron–Severi
group, and is denoted by NS(X/S ). ρ(X/S ) = rank NS(X/S ) is called the rela-
tive Picard number. When S = Spec k, it is just called the Picard number and
is denoted by ρ(X).

If L1 ≡S OX , then the equality (L1 · L2 · · · Lt · Z) = 0 holds for arbitrary
L2, . . . , Lt,Z ([80, p. 304]). Also, for any coherent sheaf F on a relative subva-
riety Z, χ(Z, F) = χ(Z, F ⊗ L1) holds ([80, p. 311]).

Two R-Cartier divisors D,D′ are said to be relatively numerically equiva-
lent, denoted by D ≡S D′ or D ≡ D′, if (D ·C) = (D′ ·C) for any relative curve
C. The numerical equivalence class of D is denoted by [D]. The set of all nu-
merical equivalence classes of R-Cartier divisors coincides with NS(X/S )⊗R,
which is a ρ(X/S )-dimensional real vector space and is denoted by N1(X/S ).

If X is a smooth complete complex manifold, D ≡ D′ is equivalent to having
the same cohomology class [D] = [D′] ∈ H2(X,R).

Fix an integer t, a finite formal linear sum of t-dimensional relative subvari-
eties Z =

∑
a jZ j is called a relative t-cycle. The coefficients ai can be integers,

rational numbers, or real numbers depending on the situation. By linearity, in-
tersection numbers can be defined for relative t-cycles. In this book, we only
consider the case t = 1 or dim X − 1.

Relative 1-cycles C,C′ are said to be numerically equivalent, denoted by
C ≡S C′, if (D · C) = (D · C′) for any Cartier divisor D. The set N1(X/S ) of
all numerical equivalence classes of relative 1-cycles with real coefficients is
a finite-dimensional real vector space. N1(X/S ) and N1(X/S ) are dual linear
spaces to each other.

Let g : Y → X be a proper morphism from another algebraic variety. For a
relative subvariety Z on Y over S , the direct image g∗Z as an algebraic cycle is
defined as the following: if dim g(Z) = dim Z, then g∗Z = [k(Z) : k(g(Z))]g(Z);
if dim g(Z) < dim Z, then g∗Z = 0. Here g(Z) is the set-theoretic image of Z,
and [k(Z) : k(g(Z))] is the extension degree of function fields. If g is a birational
morphism, then g∗Z coincides with the strict transform defined before. Also,
for a relative t-cycle Z =

∑
a jZ j, its direct image can be defined as g∗Z =∑

a jg∗Z j by linearity.
For a relative t-cycle Z and invertible sheaves L1, . . . , Lt on X, the projection

formula

(g∗L1 · · · g∗Lt · Z) = (L1 · · · Lt · g∗Z)
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holds ([80, p. 299]). In this book, we often use this formula for t = 1 in which
case

(g∗L ·C) = (L · g∗C).

Proposition 1.4.3 ([80, p. 304]) Let f : X → S and g : Y → X be two proper
morphisms. Consider the pullback g∗L of an invertible sheaf L on X.

(1) If L ≡S 0, then g∗L ≡S 0. Therefore, g induces a natural linear map
g∗ : N1(X/S )→ N1(Y/S ).

(2) When g is surjective, conversely, if g∗L ≡S 0, then L ≡S 0, hence the
pullback map g∗ is injective.

Proof (1) For any relative curve C′ on Y ,

(g∗L ·C′) = (L · g∗C′)

=

[k(C′) : k(g(C′))](L · g(C′)) if dim g(C′) = 1;

0 if dim g(C′) = 0,

which implies the assertion.
(2) If g is surjective, for any relative curve C on X, there exists a relative

curve C′ on Y such that C = g(C′), which proves the assertion. □

On the other hand, let h : S → T be a proper morphism, then the identity
map on Div(X) induces a surjective linear map (1/h)∗ : N1(X/T )→ N1(X/S ).
By taking the dual, (1/h)∗ : N1(X/S )→ N1(X/T ) is injective.

For proper morphisms g : Y → X and f : X → S , the composition of
g∗ : N1(X/S )→ N1(Y/S ) and (1/ f )∗ : N1(Y/S )→ N1(Y/X) is 0.

1.5 Cones of curves and cones of divisors

Cones and polytopes in finite-dimensional vector spaces play important roles
in this book. In Chapter 2, morphisms from algebraic varieties can be con-
structed by using faces of convex cones (the cone theorem). Also, in Chapter 3,
a sequence of rational maps can be analyzed from the behavior of a sequence
of polytopes.

1.5.1 Pseudo-effective cones and nef cones

We will define the closed convex cone generated by numerical equivalence
classes of curves in the real vector space N1(X/S ), and the closed convex cones
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generated by numerical equivalence classes of effective divisors and nef divi-
sors in the dual space N1(X/S ).

A subset C in a finite-dimensional vector space V is called a convex cone if
for any a, a′ ∈ C and r > 0, a + a′ ∈ C and ra ∈ C hold. It is called a closed
convex cone if moreover it is a closed subset.

For an element u ∈ V∗ in the dual space, define Cu≥0 = {v ∈ C | (u · v) ≥ 0}.
Cu=0 and Cu<0 can be defined similarly. The dual closed convex cone of a closed
convex cone C is defined by

C ∗ =
⋂
v∈C

V∗v≥0 = {u ∈ V∗ | (u · v) ≥ 0 for any v ∈ C }.

As C is a closed convex cone, v ∈ C is equivalent to (u · v) ≥ 0 for all u ∈ C ∗.
That is, C = C ∗∗.

For a morphism f : X → S , an invertible sheaf L on X is said to be relatively
ample, or ample over S , or f -ample, if there exists an open covering {S i} of
S , positive integers m,N, and locally closed immersions gi : Xi = f −1(S i) →
PN × S i such that L⊗m|Xi � g∗i p∗1OPN (1), where p1 : PN × S i → PN is the first
projection. Here the left-hand side is the mth tensor power of L, and the right-
hand side is the pullback of the invertible sheaf corresponding to a hyperplane
section by the first projection and gi. A Cartier divisor D is said to be relatively
ample if its divisorial sheaf OX(D) is relatively ample. A morphism admitting
a relatively ample invertible sheaf is said to be quasi-projective. In particular,
if all immersions gi are closed immersions, then the morphism is said to be
projective.

Here we recall the following useful fact. Let f : X → S and g : Y → X
be two projective morphisms, let A be an f -ample Cartier divisor on X, and
let B be a g-ample Cartier divisor on Y . Then ng∗A + B is ample over S for
sufficiently large n ([44, II.7.10]).

In the following, X is assumed to be normal and the morphism f : X → S
is assumed to be projective.

In general, the convex cone consisting of numerical equivalence classes of
all effective R-Cartier divisors is neither closed nor open. This is because
there might be infinitely many prime divisors showing up when considering
a limit of effective divisors in N1(X/S ). The closure of this cone is denoted
by Eff(X/S ), which is called the relative pseudo-effective cone. An R-Cartier
divisor D is said to be relatively pseudo-effective if its numerical equivalence
class [D] is contained in Eff(X/S ).

The set of interior points of the closed convex cone Eff(X/S ) is called the
relative big cone and is denoted by Big(X/S ). Recall that in Section 1.2, we
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introduced the definition of an R-Cartier divisor D being relatively big or f -
big. By Kodaira’s lemma later (Corollary 1.5.8), it can be shown that an R-
Cartier divisor D is relatively big if and only if its numerical equivalence class
[D] is contained in Big(X/S ).

An R-Cartier divisor D is said to be relatively nef or f -nef if (D · C) ≥ 0
for any relative curve C. This is also called relatively numerically effective.
“Nef” is an abbreviation, but it is commonly used now. The set of numerical
equivalence classes of all nef R-Cartier divisors is a closed convex cone in
N1(X/S ), which is denoted by Amp(X/S ) and called the relative nef cone.

The set of interior points of the relative nef cone is called the relative am-
ple cone and is denoted by Amp(X/S ). An R-Cartier divisor D is said to be
relatively ample or f -ample if its numerical equivalence class is contained in
Amp(X/S ). This definition will be justified by Kleiman’s theorem discussed
later (Theorem 1.5.4): For a Cartier divisor D, being f -ample in this sense is
equivalent to being f -ample in the original sense.

By definition, the sum of a relatively ample R-Cartier divisor and a relatively
nef R-Cartier divisor is again a relatively ample R-Cartier divisor.

In the dual space N1(X/S ), the cone of relative curves is the convex cone
generated by numerical equivalence classes of all relative curves, which is in
general neither open nor closed. Its closure is called the closed cone of rela-
tive curves, which is denoted by NE(X/S ). By definition, the latter is the dual
closed convex cone of the relative nef cone and the relative ample cone:

Amp(X/S ) = {u ∈ N1(X/S ) | (u · v) ≥ 0 for all v ∈ NE(X/S )} and

Amp(X/S ) = {u ∈ N1(X/S ) | (u · v) > 0 for all v ∈ NE(X/S ) \ {0}}.

Remark 1.5.1 The cones Amp(X/S ) and NE(X/S ) considered here contain
interior points, but contain no linear subspaces. This is because f : X → S
is assumed to be a projective morphism. For example, NE(X/S ) contains no
lines since the intersection number of a relatively ample divisor with a nonzero
element in NE(X/S ) is always positive by Theorem 1.5.4. A relatively ample
divisor is also called a polarization as it gives the positive direction.

The structures of relative nef cones and closed cones of relative curves are
important themes of this book.

Proposition 1.5.2 ([80, p. 337]) Let f : X → S and g : Y → X be two
projective morphisms, and let L be an invertible sheaf on X.

(1) If L is f -nef, then the pullback g∗L is ( f ◦ g)-nef.
(2) If g is surjective and g∗L is ( f ◦ g)-nef, then L is f -nef.
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(3) If g is surjective, then

g∗Amp(X/S ) = Amp(Y/S ) ∩ g∗N1(X/S ).

(4) Assume that g is surjective. If moreover g is a finite morphism, then

g∗Amp(X/S ) = Amp(Y/S ) ∩ g∗N1(X/S ),

otherwise

g∗Amp(X/S ) = ∂Amp(Y/S ) ∩ g∗N1(X/S ).

Here ∂ is the boundary of the closed convex cone.

Proof The proof of (1) and (2) is similar to that of Proposition 1.4.3. (3)
follows from (2).

(4) When g is a finite morphism, the pullback of a relatively ample invertible
sheaf is again a relatively ample invertible sheaf, hence the former assertion
follows. On the other hand, when g is not a finite morphism, the pullback of
a relatively ample invertible sheaf is never a relatively ample invertible sheaf,
hence the latter assertion follows from (3). □

It was shown that a nonfinite morphism gives a face of the relative nef cone.
Conversely, sometimes it is possible to construct a nonfinite morphism from
a face of the relative nef cone; this is the contraction theorem in the minimal
model theory.

Example 1.5.3 (1) Let X be a smooth projective complex algebraic surface
and let C be a curve on X with negative self-intersection (C2) < 0.

For any curve C′ different from C, the intersection number is always
nonnegative: (C · C′) ≥ 0. Denote by C ′ ⊂ N1(X) the closed convex cone
generated by the numerical equivalence classes of all curves C′ different
from C, then the closed cone of curves NE(X) is generated by C ′ and [C].

Since (C · C′) ≥ 0 for all C′ ∈ C ′, [C] < C ′. Therefore, one can see
that [C] generates an extremal ray of NE(X). Taking the dual, we get a face
F = Amp(X)C=0 of Amp(X).

According to a result of Grauert ([33]), there exists a compact complex
analytic surface Y with only normal singularities and a birational mor-
phism f : X → Y between complex analytic surfaces such that C is con-
tracted to a point. That is, f (C) is a point and there is an isomorphism
f : X \ C → Y \ f (C). However, Y is in general not an algebraic variety.
But according to a result of Artin ([7]), if C � P1, then Y is a projective
algebraic surface and f becomes a birational morphism between algebraic
varieties.
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In this sense, it may or may not be possible to construct a morphism
from a face of the nef cone.

(2) Let X be an Abelian variety, that is, a smooth projective algebraic variety
with an algebraic group structure. In this case, any prime divisor D on X
is nef, and

Amp(X) = {v ∈ N1(X) | (vn) > 0}0.

Here n = dim X and 0 on the right-hand side means one of the connected
components.

1.5.2 Kleiman’s criterion and Kodaira’s lemma

In this subsection, we introduce Kleiman’s ampleness criterion. We also prove
Kodaira’s lemma, which characterizes big divisors.

Theorem 1.5.4 (Kleiman’s criterion [80]) For a projective morphism f :
X → S between algebraic varieties, a Cartier divisor D on X is relatively
ample if and only if its numerical equivalence class is contained in the relative
ample cone Amp(X/S ).

Remark 1.5.5 Kleiman’s criterion is a paraphrase of Nakai’s criterion for
projectivity and ampleness using the language of cones of divisors. In Kleiman’s
criterion as well as Nakai’s criterion, X is not necessarily assumed to be irre-
ducible or reduced. It is also not necessarily assumed to be projective, and
whether a proper scheme is projective can be determined by whether Amp(X)
is not empty.

As ampleness is an algebro-geometric property which is nonlinear, we can
say that it is linearized by Kleiman’s criterion using conditions in numerical
geometry. This is a typical example of numerical geometry.

An invertible sheaf L on a projective algebraic variety X induces a functional
hL on the dual space N1(X). By Kleiman’s criterion, L is ample if and only if
hL is positive on the closed cone of curves NE(X).

This condition is strictly stronger than the condition that hL(C) = (L ·C) > 0
for any curve C. We explain this by the following example:

Example 1.5.6 (Mumford’s example) Let Γ be a smooth projective complex
algebraic curve of genus at least 2 and let F be a locally free sheaf on Γ of rank
2 and of degree 0. The last condition means that

∧2 F ≡ OΓ. Assume that F is
stable, that is, deg(M) < 0 for any invertible subsheaf M of F. Such F can be
constructed by using unitary representations of the fundamental group π1(Γ).
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In this case, for any surjective morphism f : C → Γ from a smooth projective
curve, f ∗F is also stable.

Let X = P(F) be the corresponding P1-bundle over Γ and L = OP(F)(1). Let
C0 be a curve on X. If it is not a fiber of f , take f : C → Γ to be the composition
of the normalization g : C → C0 and the projection C0 → Γ. In this case, g∗L
is an invertible sheaf which is a quotient of f ∗F, hence its degree is positive. If
C0 is a fiber of f , then (L · C0) = 1. That is, the inequality (L · C0) > 0 holds
for any curve C0 on X. On the other hand, (L2) = 0 since deg(F) = 0, which
means that L is not ample.

The following Kodaira’s lemma gives a characterization of big divisors.

Theorem 1.5.7 (Kodaira’s lemma) (1) A Cartier divisor D on a normal pro-
jective algebraic variety X is big if and only if there exists a positive integer
m, an ample Cartier divisor A, and an effective Cartier divisor E such that
mD = A + E.

(2) For a surjective projective morphism f : X → S from a normal algebraic
variety to a quasi-projective algebraic variety, a Cartier divisor D on X
is relatively big if and only if there exists a positive integer m, a relatively
ample Cartier divisor A, and an effective Cartier divisor E such that mD =
A + E.

In other words, big divisors are divisors bigger than ample divisors.

Proof (1) As ample divisors are big, the condition is sufficient.
Conversely, assume that D is big. Denote n = dim X. Take a very ample

Cartier divisor A and a general element in its complete linear system Y ∈ |A|.
Consider the following exact sequence:

0→ OX(mD − Y)→ OX(mD)→ OY (mD|Y )→ 0.

Look at the first part of the corresponding long exact sequence

0→ H0(X,mD − Y)→ H0(X,mD)→ H0(Y,mD|Y ),

as dim Y = n− 1, the dimension of the last term is bounded by cmn−1 for some
constant c. But by the bigness, the central term goes much larger, so the first
term is not 0 for sufficiently large m. Hence there exists an effective divisor E
with linear equivalence mD − Y ∼ E. In this case, mD − E ∼ Y is ample and
the proof is completed.

(2) As the restriction of relatively ample (respectively, effective) divisors on
the generic fiber are ample (respectively, effective), the condition is sufficient.

Conversely, assume that D is relatively big. By the argument of (1), for a
relatively ample Cartier divisor A, there exists a sufficiently large m such that
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the direct image sheaf f∗(OX(mD − A)) , 0. Take a sufficiently ample Cartier
divisor B on S such that

H0(X,mD − A + f ∗B) = H0(S , f∗(OX(mD − A)) ⊗ OS (B)) , 0.

Then there exists an effective Cartier divisor E with linear equivalence mD −
A+ f ∗B ∼ E. In this case, mD− E ∼ A− f ∗B is relatively ample and the proof
is completed. □

As a corollary, together with Kleiman’s criterion, the definition of relative
big cones is justified:

Corollary 1.5.8 For a surjective projective morphism f : X → S from a nor-
mal algebraic variety to a quasi-projective algebraic variety, a Cartier divisor
D on X is relatively big if and only if the numerical equivalence class [D] is
contained in the relative big cone Big(X/S ).

Proof By Kleiman’s criterion and Kodaira’s lemma, D is relatively big if and
only if [D] is an interior point of the closed convex cone generated by effective
divisors. □

Corollary 1.5.9 Amp(X/S ) ⊂ Eff(X/S ).

Proof As ample divisors are big, we have an inclusion Amp(X/S ) ⊂ Big(X/S )
between open cones. The conclusion follows by taking closures. □

Kodaira’s lemma can be generalized as the following:

Corollary 1.5.10 (1) An R-Cartier divisor D on a normal projective alge-
braic variety X is big if and only if there exists an ample R-Cartier divisor
A, and an effective R-Cartier divisor E such that D = A + E.

(2) For a surjective projective morphism f : X → S from a normal algebraic
variety to a quasi-projective algebraic variety, an R-Cartier divisor D on
X is relatively big if and only if there exists a relatively ample R-Cartier
divisor A and an effective R-Cartier divisor E such that D = A + E.

Proof (1) Assume that D = A + E. Then there exists an ample Q-Cartier
divisor A′ and an effective R-Cartier divisor E′ such that we can write A =
A′ + E′, hence D is big.

Conversely, assume that D is big. By the proof of Kodaira’s lemma, for
sufficiently large m, there exists an ample Cartier divisor A and an effective
divisor E such that ⌞mD⌟ = A+E. Since mD−⌞mD⌟ is effective, the assertion
is proved.

(2) It is similarly deduced from the relative version of Kodaira’s lemma. □
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Proposition 1.5.11 Let f : Y → X be a birational morphism between normal
projective algebraic varieties and let D be an R-Cartier divisor on X. Then D
is big if and only if the pullback f ∗D is big.

Proof For a rational function h ∈ k(X) � k(Y), divX(h) + ⌞mD⌟ ≥ 0 is equiv-
alent to divX(h) + mD ≥ 0. Here the subscript X means taking the correspond-
ing divisor on X. The latter is equivalent to divY (h) + m f ∗D ≥ 0, which is
then equivalent to divY (h) + ⌞m f ∗D⌟ ≥ 0. Therefore, the natural homomor-
phism H0(X, ⌞mD⌟) → H0(Y, ⌞m f ∗D⌟) is bijective, and the assertion is con-
cluded. □

Theorem 1.5.12 ([92, Theorem 2.2.16]) Let X be an n-dimensional projec-
tive algebraic variety and let D be a nef R-Cartier divisor. Then D is big if and
only if (Dn) > 0.

Proof If D is big, then we can write D = A + E for some ample Q-divisor A
and some effective R-divisor E. In this case, since D and A are nef,

(Dn) = (Dn−1 · A) + (Dn−1 · E) ≥ (Dn−1 · A)

= (Dn−2 · A2) + (Dn−2 · A · E) ≥ · · · ≥ (An) > 0.

Here we use the fact that if D1, . . . ,Dn are R-divisors on X such that D1, . . . ,Dn−1

are nef and Dn is either effective or nef, then (D1 · · ·Dn) ≥ 0.
Conversely, to show that D is big provided that D is nef and (Dn) > 0, we

will show the following slightly generalized statement: If for two nef R-Cartier
divisors L,M we have (Ln) > n(Ln−1 · M), then L − M is big. The theorem
follows by taking M = 0.

First, we assume that L,M are ample Q-Cartier divisors. We may assume
that they are both very ample by taking a common multiple. Taking m general
elements Mi ∈ |M| (1 ≤ i ≤ m), by the exact sequence

0→ OX(m(L − M))→ OX(mL)→
⊕

i

OMi (mL),

the Riemann–Roch theorem, and the Serre vanishing theorem, when m → ∞,
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we have

dim H0(X,m(L − M))

≥ dim H0(X,mL) −
m∑

i=1

dim H0(Mi,mL|Mi )

=
(Ln)
n!

mn −

m∑
i=1

(Ln−1 · Mi)
(n − 1)!

mn−1 + O(mn−1)

=
(Ln) − n(Ln−1 · M)

n!
mn + O(mn−1).

Here note that for each Mi, the dimension of H0(Mi,mL|Mi ) is independent of
the choice of Mi, and it can be estimated by O(mn−2). Therefore, L − M is big.

Then we consider the general case. We may take two sufficiently small am-
ple R-Cartier divisors H,H′ such that H′−H is big, and L+H, M+H′ are ample
Q-Cartier divisors. Here H,H′ can be taken sufficiently small in the sense that
((L + H)n) > n((L + H)n−1 · (M + H′)) holds. Then we already showed that
L + H − M − H′ is big, which implies that L − M is big. □

We can investigate how cones of divisors change under birational maps:

Lemma 1.5.13 Let α : X 99K X′ be a birational map between normal Q-
factorial varieties which is isomorphic in codimension 1 and let f : X → S
and f ′ : X′ → S be projective morphisms with f = f ′ ◦ α.

(1) α induces an isomorphism α∗ : N1(X/S )→ N1(X′/S ) between real linear
spaces.

(2) α∗(Eff(X/S )) = Eff(X′/S ).
(3) If α is not an isomorphism, then α∗(Amp(X/S )) ∩ Amp(X′/S ) = ∅.

Proof (1) Since α is isomorphic in codimension 1, there is a 1–1 correspon-
dence between prime divisors on X and X′. Hence Z1(X) � Z1(X′). Take a
divisor D on X and take its strict transform D′ = α∗D. Applying the desin-
gularization theorem discussed in Section 1.6, there exists a smooth algebraic
variety W and birational projective morphisms g : W → X and g′ : W → X′

such that we can write g∗D = (g′)∗D′+E, where g∗E = 0 and g′∗E = 0. Assume
that D ≡S 0, then g∗D ≡S 0.

In the following we will show that D′ ≡S 0. We may assume that E , 0
otherwise it is obvious. Write E = E+ − E− into the positive part and the
negative part. If E+ , 0, then by the negativity lemma (Lemma 1.6.3), there
exists a curve C contracted by g′ such that (E+ · C) < 0 and (E− · C) ≥ 0. On
the other hand, ((g′)∗D′ ·C) = (D′ ·g′∗C) = 0 and (g∗D ·C) = 0, a contradiction.
We can get a contradiction similarly if E− , 0.
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(2) follows from (1) as the strict transform of an effective divisor is again
effective.

(3) As the intersection is an open cone, if the intersection is nonempty, then
there exists a relatively ample divisor D on X such that α∗D is a relatively
ample divisor on X′. Since α is isomorphic in codimension 1, for any integer
m, α∗ : f∗OX(mD)→ f ′∗OX′ (mD′) is an isomorphism. Therefore,

X = ProjS

 ∞⊕
m=0

f∗OX(mD)

 � ProjS

 ∞⊕
m=0

f ′∗OX′ (mD′)

 = X′,

and α is an isomorphism. □

1.6 The Hironaka desingularization theorem

The desingularization theorem was established by Hironaka for algebraic vari-
eties in characteristic 0. Although it is expected that the same theorem holds for
positive characteristics and mixed characteristics, it is only proved in dimen-
sion 2 and for positive characteristics in dimension 3, while it remains open in
the general case. Together with the Kodaira vanishing theorem, they are very
important theorems in characteristic 0. Here we introduce the desingularization
theorem ([45]) without proof.

Theorem 1.6.1 (Hironaka desingularization theorem) (1) For any algebraic
variety X defined over a field of characteristic 0, there exists a smooth al-
gebraic variety Y and a birational projective morphism f : Y → X.

(2) For any algebraic variety X defined over a field of characteristic 0 and
a proper closed subset B of X, there exists a smooth algebraic variety Y,
a normal crossing divisor C on Y, and a birational projective morphism
f : Y → X with the following properties:

(a) If B is nonempty, then the set-theoretic inverse image f −1(B) is a union
of several irreducible components of C.

(b) The exceptional set Exc( f ) is a union of several irreducible compo-
nents of C.

For each statement, we can assume further the following properties hold:

(1’) f is isomorphic over the smooth locus Reg(X) = X \ Sing(X), and the
exceptional set Exc( f ) coincides with the set-theoretic inverse image of
the singular locus f −1(Sing(X)).

(2’) f is isomorphic over Reg(X, B) and the exceptional set Exc( f ) coincides
with the set-theoretic inverse image f −1(Sing(X, B)).
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A birational morphism with the property in (1) is called a resolution of sin-
gularities of the algebraic variety X. A birational morphism with the property
in (2) is called a log resolution of the pair (X, B). For the definition of normal
crossing divisors please refer to Section 1.1.

Remark 1.6.2 (1) If replacing the two conditions for the log resolution by
the condition that f −1(B) ∪ Exc( f ) is a normal crossing divisor, we call
it a log resolution in weak sense. This is called a log resolution in some
literature. On the other hand, if we assume furthermore that Exc( f ) is the
support of an f -ample divisor in condition (b), we call it a log resolution
in strong sense. In this case, the f -ample divisor supported on Exc( f ) has
negative coefficients according to Lemma 1.6.3 below.

(2) Hironaka’s desingularization can be obtained by blowing up along smooth
centers finitely many times. Since there exists a relatively ample divisor
supported on the exceptional divisor with negative coefficient for a blowup
along a smooth center, Hironaka’s desingularization obtained in this way
is a log resolution in strong sense.

By Theorem 1.6.4, starting from any log resolution, one can construct a
log resolution in strong sense by further taking blowups along the excep-
tional set.

(3) In the latter part of the above theorem, a normal crossing divisor is in the
sense of the Zariski topology, which is a “simple normal crossing divisor”.
It does not hold for normal crossing divisors in complex analytic sense.
For example, take the divisor B defined by the equation x2 + y2z = 0 in
X = C3. The singular locus of B is the line defined by x = y = 0 and B is
a normal crossing divisor in the complex analytic sense if z , 0. However,
the origin P = (0, 0, 0) has the so-called pinch point singularity, no blowup
which is isomorphic outside P can make B a normal crossing divisor.

(4) The above theorem is proved in Hironaka’s original paper ([45]), but it
has been shown that there exists a more precise “canonical resolution” in
subsequent developments. The canonical resolution admits strong functo-
riality such that any local isomorphism (isomorphism between two open
subsets) of the pair (X, B) lifts to a local isomorphism of (Y,C). However,
the canonical resolution is not unique, it is only shown that there exists a
universal choice ([46, 11, 140, 142]).

Lemma 1.6.3 (Negativity lemma) Let f : X → Y be a birational projec-
tive morphism between normal algebraic varieties and let D be an R-Cartier
divisor on X supported in the exceptional set Exc( f ).

(1) If D is nonzero and effective, then there exists a curve C which is con-
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tracted by f and passes through a general point of an irreducible compo-
nent of D such that (D ·C) < 0.

(2) If D is f -nef and nonzero, then the coefficients of D are all negative. Fur-
thermore, the support of D coincides with the set-theoretic inverse image
f −1( f (Supp(D))).

(3) If D is f -ample, then the support of D coincides with Exc( f ).

Proof We may assume that Y is affine. Consider 0 ≤ i ≤ dim f (Supp(D)) and
j = dim X − 2 − i. Take Yi by cutting Y by general hyperplane sections i times
and take Xi j by cutting f −1(Yi) by general hyperplane sections j times. Since
i+ j = dim X−2, Xi j is a normal algebraic surface. Let Yi j be the normalization
of f (Xi j), then f induces a birational projective morphism fi j : Xi j → Yi j.
Note that Di j = D|Xi j is an R-Cartier divisor supported in the exceptional set
Exc( fi j).

(1) Since D is nonzero and effective, so is Di j for some i, j. By the Hodge
index theorem, applying Corollary 1.13.2 to π : X̃i j → Yi j and π∗Di j, where X̃i j

is a resolution of Xi j, we get (Di j)2 < 0. In particular, there exists an irreducible
component C of Di j such that (Di j · C) < 0. View C as a curve in X, we have
(D · C) < 0. Note that by construction, C comes from cutting an irreducible
component of D by hyperplane sections, so such C passes through a general
point of an irreducible component of D.

(2) We may write Di j = D+i j − D−i j in terms of its positive and negative parts.
Since Di j is fi j-nef, (D+i j)

2 ≥ (D+i j · Di j) ≥ 0. By the Hodge index theorem
(Corollary 1.13.2), D+i j = 0. Hence the coefficients of Di j are negative. As
i, j varies, any coefficient of D appears as the coefficient of some Di j. So, the
coefficients of D are all negative. If the support of D does not coincide with
f −1( f (Supp(D))), then there is a curve C intersecting Supp(D) properly such
that f (C) is a point. Then (D ·C) < 0, a contradiction.

(3) By (2), all coefficients of D are negative. If the support of D does not
coincide with Exc( f ), then there is a curve C not contained in Supp(D) such
that f (C) is a point. Then (D ·C) ≤ 0, a contradiction. □

Let X be a smooth algebraic variety and let B be a normal crossing divisor
on X. A smooth subvariety Z is called a permissible center with respect to the
pair (X, B) if the following is satisfied: For the local ring OX,P at every point
P ∈ X, there exists a regular system of parameters z1, . . . , zn and integers r, s, t
such that the equations of B,Z are z1 · · · zr = 0, zs = · · · = zt = 0, respectively.
Here 0 ≤ r ≤ n and 0 ≤ s ≤ t ≤ n, but there is no specific relation between r
and s, t.

The blowup f : Y → X along a permissible center Z with respect to (X, B)
is called a permissible blowup. In this case, the exceptional set E is a smooth
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prime divisor on Y and coincides with the set-theoretic inverse image f −1(Z).
The sum C = f −1

∗ B + E with the strict transform is a normal crossing divisor
on Y . We have KY = f ∗KX + (t − s)E and f ∗B = f −1

∗ B +max{r − s + 1, 0}E.
The desingularization theorem also contains the following statement:

Theorem 1.6.4 ([45]) Let X be a smooth algebraic variety defined over a field
of characteristic 0, let B be a normal crossing divisor on X, and let f : Y → X
be a proper birational morphism from another smooth algebraic variety Y.
Then there exists a sequence of blowups fi : Xi → Xi−1 (i = 1, . . . , n) and a
birational morphism g : Xn → Y with the following properties:

(1) X = X0 and f ◦ g = f1 ◦ · · · ◦ fn.

(2) fi is a permissible blowup with respect to (Xi−1, Bi−1). Here B = B0 and the
normal crossing divisor Bi on Xi is defined inductively by Bi = f −1

i∗ Bi−1 +

Exc( fi).

1.7 The Kodaira vanishing theorem

The Kodaira vanishing theorem holds only in characteristic 0. There are coun-
terexamples in positive characteristics ([118]). The vanishing theorem and its
generalizations are indispensable tools for the minimal model. Here we intro-
duce the Kodaira vanishing theorem ([82]) without proof.

Theorem 1.7.1 (Kodaira vanishing theorem) Let X be a smooth projective
complex algebraic variety and let D be an ample divisor on X. Then for any
positive integer p > 0, Hp(X,KX +D) = 0. Here KX is the canonical divisor of
X.

The Kodaira vanishing theorem is a theorem in complex differential geom-
etry established for a compact complex manifold X. Let L be a holomorphic
line bundle on a compact complex manifold X. L is always endowed with a
C∞ Hermitian metric h. The curvature of the corresponding connection of h
determines a C∞ (1, 1)-form on X. In this case, the following assertion holds
by the Kodaira embedding theorem:

Theorem 1.7.2 ([83]) Let X be a compact complex manifold and let L be a
line bundle with a Hermitian metric h. If the curvature

√
−1Θ is positive def-

inite everywhere, then X has a projective complex algebraic variety structure
and L is the line bundle corresponding to an ample divisor.
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We have the following implications:

Algebraic
geometry ⇒

Complex differential
geometry ⇒ Numerical

geometry

Ample
divisors ⇒ Line bundles

with positive curvatures ⇒ Numerically positive
divisors

The feature of the Kodaira vanishing theorem is that the canonical divisor
appears in the statement and it provides a more accurate vanishing compared
to the Serre vanishing theorem below. This paves the way for geometric appli-
cations. To be applied in higher dimensional algebraic geometry, the Kodaira
vanishing theorem is greatly generalized and used in many directions, as will
be discussed in Section 1.9.

Remark 1.7.3 The Kodaira vanishing theorem is originally proved for alge-
braic varieties defined over complex numbers, but it holds also for algebraic
varieties defined over any field in characteristic 0, since a field in characteristic
0 which is finitely generated over the prime field Q can be always embedded
into C.

Theorem 1.7.4 (Serre vanishing theorem [126], [44, III.5.2]) Let X be a pro-
jective scheme over a field k, let L be an ample sheaf on X, and let F be a
coherent sheaf on X. Then there exists a positive integer m0 such that for any
integer m ≥ m0, the following assertions hold:

(1) F ⊗ L⊗m is generated by global sections.
(2) For any positive integer p > 0, Hp(X, F ⊗ L⊗m) = 0.

The Serre vanishing theorem holds without conditions on characteristics of
the field k and singularities of X. It has much more applicability than the Ko-
daira vanishing theorem, but it is weaker.

The log version of the Kodaira vanishing theorem can be proved by the
adjunction formula ([117]):

Corollary 1.7.5 Let X be a smooth projective algebraic variety defined over
a field of characteristic 0, let B be a normal crossing divisor on X, and let D be
an ample divisor on X. Then for any positive integer p > 0, Hp(X,KX+B+D) =
0.

Proof We do induction on the dimension n of X and the number r of prime
divisors of B. If r = 0, this is just the Kodaira vanishing theorem. If r > 0, take
a prime divisor B1 of B, denote B′ = B − B1 and C = B′|B1 . By the adjunction
formula, we get an exact sequence

0→ OX(KX + B′ + D)→ OX(KX + B + D)→ OB1 (KB1 +C + D|B1 )→ 0.
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By the inductive hypothesis, for any positive integer p > 0, Hp(X,KX + B′ +
D) = Hp(B1,KB1 +C + D|B1 ) = 0. This concludes the assertion. □

1.8 The covering trick

The covering trick is a classical method to construct new algebraic varieties
from a given one by using cyclic coverings. However, in this method, the new
algebraic variety may have singularities even if the given algebraic variety is
smooth. Therefore, we describe how to construct a covering without creating
new singularities.

First, we describe the construction of cyclic coverings. Let X be an algebraic
variety over an algebraically closed field k, let h be a nonzero rational function
on X, and let m be a positive integer coprime to the characteristic of k. When
k = C, m can be taken arbitrarily. Consider the function field extension K =
k(X)[h1/m], take Y to be the normalization of X in K with the natural morphism
f : Y → X. The extension Y/X is a Galois extension with a cyclic Galois
group, and the extension degree m′ = [k(Y) : k(X)] is a divisor of m.

Y can be constructed as the following. Assume that X is covered by affine
open subsets Ui = Spec(Ai). The fractional field of Ai is the function field k(X).
Take Bi to be the normalization of Ai in K, then Y is obtained by gluing affine
varieties Spec(Bi).

Example 1.8.1 Let X be a smooth complex algebraic variety, let D be a di-
visor on X, and let s be a global section of OX(mD). The zero divisor div(s) of
s and the divisor div(h) of the rational function h corresponding to s is related
by

div(s) = div(h) + mD.

Here div(s) is an effective divisor but div(h) is not necessarily effective and
might have poles along D in general.

Assume that B = div(s) is reduced and is a smooth subvariety of X. Consider
Y to be the cyclic covering of X induced by h. In this case, Y is smooth and f :
Y → X is a finite morphism branched along B. Here D is not contained in the
branch locus. Indeed, for any point P in B, take a regular system of parameters
z1, . . . , zn such that B = div(z1), then the regular system of parameters of any
point Q over P can be taken as z1/m

1 , z2, . . . , zn.
One should be careful that if B = div(s) has singularities, then Y has singu-

larities correspondingly. When the support of B is a normal crossing divisor, Y
has at worst toric singularities, which is easier to handle. This will be discussed
in Section 3.7.
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We can produce a more useful covering by considering the Kummer cover-
ing, a generalization of cyclic covering.

Theorem 1.8.2 ([53]) Let X be a smooth projective algebraic variety defined
over an algebraically closed field of characteristic 0 and let B be a normal
crossing divisor on X. Fix a positive integer mi for each irreducible component
Bi of B. Then there exists a smooth projective algebraic variety Y and a finite
morphism f : Y → X with the following properties:

(1) The set-theoretic inverse image C = f −1(B) is a normal crossing divisor.
(2) For each i, there exists a reduced divisor Ci such that the pullback of Bi

as a divisor can be written as f ∗Bi = miCi. Here a reduced divisor is a
divisor with all coefficients equal to 1.

(3) f is a Galois covering and the Galois group G is an Abelian group.

One feature of this covering is that it is a finite morphism branched along
a normal crossing divisor such that the covering space is again smooth. Note
that the branch locus of f is a normal crossing divisor containing B, but they
do not coincide in general. Moreover, since X is smooth, f is a flat morphism.

Proof Denote n = dim X. Take a very ample divisor A such that miA − Bi is
very ample for all i. For each i, take n general global sections si j ( j = 1, . . . , n)
in H0(X,miA − Bi). We may assume that for each i, j, Mi j = div(si j) is smooth
and

∑
i, j Mi j +

∑
i Bi is a normal crossing divisor.

Take the rational function hi j corresponding to si j and take fi j : Yi j → X to
be the normalization of X in k(X)[h1/mi

i j ]. It is easy to see that the branch locus
is Mi j + Bi and the ramification index is mi.

Take f : Y → X to be the normalization of the fiber product of all fi j :
Yi j → X over X. In other words, Y is just the normalization of X in the field
k(X)[h1/mi

i j ]i j. We will check that this Y satisfies the required properties.
For any point P in X, denote by Bil (l = 1, . . . , r) and M jqkq (q = 1, . . . , s)

the irreducible components of
∑

i, j Mi j +
∑

i Bi containing P. Note that r + s ≤
dim X = n.

If r = 0, that is, P is not contained in the support of B, then by construction,
Yi j is smooth over a neighborhood of P, and there is nothing to prove. So we
may assume that r ≥ 1.

By the numbers of Mi j, for each il, there exists at least one pl such that
Mil pl does not contain P. Denote h̄ jqkq = h jqkq/hil pl if jq = il; otherwise h̄ jqkq =

h jqkq h
m jq

A , where hA is a local equation of the divisor A. In this case,

hi1 p1 h
mi1
A , . . . , hir pr h

mir
A , h̄ j1k1 , . . . , h̄ jsks
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is a part of a regular system of parameters of OX,P. Indeed, in a neighborhood
of P, these functions are exactly the defining equations of

Bi1 , . . . , Bir ,M j1k1 , . . . ,M jsks ,

which form a normal crossing divisor in a neighborhood of P. The localization
Y ×X SpecOX,P is étale over the normalization of SpecOX,P in

k(X)[h
1/mi1
i1 p1
, . . . , h1/mir

ir pr
, h

1/m j1
j1k1
, . . . , h1/m js

jsks
]

= k(X)[h
1/mi1
i1 p1

hA, . . . , h
1/mir
ir pr

hA, h̄
1/m j1
j1k1
, . . . , h̄1/m js

jsks
].

Therefore, Y is smooth. The properties on C and Ci can be checked similarly.
□

The covering in the above theorem preserves smoothness by adding branch
locus artificially. The covering below is a natural construction for a Q-Cartier
Weil divisor which is not Cartier:

Proposition 1.8.3 Let X be a normal algebraic variety defined over an alge-
braically closed field of characteristic 0 and let D be a divisor on X. Assume
that for some positive integer r, rD is Cartier and moreover OX(rD) � OX .
Take r to be the minimal one, then there exists a Galois finite morphism f :
Y → X from a normal algebraic variety whose Galois group is the cyclic
group of order r such that f is étale in codimension 1 and f ∗D is a Cartier
divisor on Y.

Proof Fix an everywhere nonzero global section s of OX(rD). The corre-
sponding rational function h satisfies divX(h) = −rD. Take Y to be the nor-
malization of X in the function field extension L = k(X)[h1/r]. L is a field as
r is minimal. Then − f ∗(D) = divY (h1/r) is Cartier. It is easy to see that f is
étale over the locally free locus of OX(D), and in particular, f is étale over
X \ Sing(X). □

Such f : Y → X is called the index 1 cover of the divisor D. In particular, if
D = KX , it is called the canonical cover.

Remark 1.8.4 (1) This covering is not unique, it depends on the choice of
s. Take another global section s′, there is a nowhere 0 function u such that
s′ = us. The normalization of X in k(X)[u1/r] gives an étale covering X′ →
X, and the base change to X′ gives an isomorphism Y ×X X′ � Y ′ ×X X′.
Here Y ′ is the cyclic covering obtained by s′. Therefore, this covering is
unique up to étale base changes.
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(2) Fix a point P ∈ X and take rP to be the minimal positive integer such that
rPD is Cartier in a neighborhood of P, then f −1(P) consists of r/rP points
by construction. In particular, f is étale over the points where D is Cartier.

1.9 Generalizations of the Kodaira vanishing theorem

According to [76], we generalize the Kodaira vanishing theorem to different
directions in order to apply it to higher dimensional algebraic geometry. The
generalized vanishing theorems will be used as the key point of proofs in each
part of this book.

In this section, we always assume that the base field is of characteristic 0.
First, we extend the Kodaira vanishing theorem to R-divisors:

Theorem 1.9.1 Let X be a smooth projective algebraic variety and let D be
an ample R-divisor on X such that the support of ⌜D⌝−D is a normal crossing
divisor. Then for any positive integer p > 0, Hp(X,KX + ⌜D⌝) = 0.

Here we prove the following equivalent theorem:

Theorem 1.9.2 Let X be a smooth projective algebraic variety, let B be an
R-divisor on X with coefficients in (0, 1) and supported on a normal crossing
divisor, and let D be an integral divisor on X. Assume that D − (KX + B) is an
ample R-divisor. Then for any positive integer p > 0, Hp(X,D) = 0.

Proof Write B =
∑

biBi. Here Bi are prime divisors and
∑

Bi is a normal
crossing divisor. As ampleness is an open condition, for each i we can take
a fraction ni/mi (0 < ni < mi) sufficiently close to bi such that D − (KX +∑

(ni/mi)Bi) is an ample Q-divisor. In the following we may assume that B =∑
(ni/mi)Bi.
Take the covering f : Y → X as in Theorem 1.8.2 for irreducible com-

ponents Bi of B with positive integers mi. By construction, f ∗B is a divisor
with integral coefficients. The Galois group G acts on the invertible sheaf
OY (KY − f ∗(KX + B)) equivariantly in the following way. The action of G on
the tangent sheaf TY induces the action on the canonical sheaf OY (KY ), and the
action of G on OY (− f ∗(KX+B)) is induced from that on OY as − f ∗(KX+B) is a
G-invariant divisor. Since f is flat, the direct image sheaf f∗OY (KY− f ∗(KX+B))
is a locally free sheaf with a G-action and the G-invariant part L = ( f∗OY (KY −

f ∗(KX + B)))G is an invertible sheaf. Here since G is Abelian, f∗OY decom-
poses to a direct sum of invertible sheaves corresponding the G-eigenspaces,
and hence L is invertible.
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L can be written as the form of a divisorial sheaf OX(E). In order to deter-
mine E, we only need to look at the generic points of the branched divisor of
f . First, any prime divisor not contained in B is not an irreducible component
of E. Indeed, for any finite Galois covering g : W → Z between smooth va-
rieties with Galois group G, we have a natural isomorphism (g∗ωW )G � ωZ ,
which means that over U = X \Supp(B), L|U = ( f∗OY (KY − f ∗(KX + B)))G |U =

( f∗OY (KY − f ∗(KX)))G |U ≃ OU .
For the generic point P of Bi, set x1 to be the regular parameter of the discrete

valuation ring OX,P. Then for a point Q on Y over P, y1 = f ∗x1/mi
1 is a regular

parameter and the invertible sheaf OY (KY − f ∗(KX + B)) is generated by the
section y−(mi−1)+ni

1 . Since 0 < ni < mi, G-invariant sections are generated by 1.
Therefore, it turns out that E = 0. In summary, L = ( f∗OY (KY− f ∗(KX+B)))G =

OX .
As the pullback of an ample divisor by a finite morphism is ample, the pull-

back f ∗(D − (KX + B)) is again ample. By the Kodaira vanishing theorem, for
any positive integer p > 0, Hp(Y,KY + f ∗(D − (KX + B))) = 0. As f is finite,
there is no higher direct image, hence Hp(X, f∗OY (KY + f ∗(D− (KX+B)))) = 0.
As the G-invariant part is a direct summand, Hp(X,D) = 0. □

Next, we prove the relative version of the vanishing theorem:

Theorem 1.9.3 Let X be a smooth algebraic variety, let B be an R-divisor
on X with coefficients in (0, 1) and supported on a normal crossing divisor, let
D be an integral divisor on X, and let f : X → S be a projective morphism
to another algebraic variety. Assume that D − (KX + B) is a relatively ample
R-divisor. Then for any positive integer p > 0,

Rp f∗(OX(D)) = 0.

We will prove the following equivalent theorem:

Theorem 1.9.4 Let X be a smooth algebraic variety, let f : X → S be
a projective morphism to another algebraic variety and let D be a relatively
ample R-divisor on X such that the support of ⌜D⌝ − D is a normal crossing
divisor. Then for any positive integer p > 0,

Rp f∗(OX(KX + ⌜D⌝)) = 0.

Proof As the assertion is local on S , we may assume that S is affine. Replac-
ing the integral part of D by a linearly equivalent one while keeping ⌜D⌝ − D
unchanged, we may assume that the support of D is a normal crossing divisor.
However, D is not necessarily effective. We may assume that D is a Q-divisor
as ampleness is an open condition.
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Shrinking S if necessary, we can find a sufficiently large integer m such that
mD is an integral divisor and there exists a closed immersion g : X → PN × S
such that OX(mD) � g∗p∗1OPN (1), where p1 is the first projection.

Next, take a projective algebraic variety S̄ to be the compactification of S ,
and take X̄ to be the normalization of the closure of X in PN× S̄ . The projective
morphism f̄ : X̄ → S̄ and the finite morphism ḡ : X̄ → PN × S̄ are naturally
induced.

Here X̄ is possibly singular, and the extension of D is a Q-Cartier divisor D̄
defined by OX̄(mD̄) � ḡ∗p∗1OPN (1). Since D̄ is relatively ample over S̄ , we can
choose an ample Cartier divisor A1 on S̄ such that D̄ + f̄ ∗A1 is ample. As S is
affine, we may assume that the support of A1 is contained in S̄ \ S .

Take h : Y → X̄ to be a log resolution of the pair (X̄, D̄ + f̄ ∗A1) in strong
sense. As X is smooth and the support of D is a normal crossing divisor, h can
be assumed to be the identity over X. We may choose a Q-Cartier divisor A2

supported in the exceptional set of h such that D̄′ = h∗D̄ + h∗ f̄ ∗A1 + A2 is
ample. By construction, the support of D̄′ is a normal crossing divisor, and by
Theorem 1.9.1, for any positive integer p, Hp(Y,KY + ⌜D̄′⌝) = 0. Note that the
support of h∗ f̄ ∗A1 + A2 is contained in Y \ X.

Consider the following spectral sequence:

Ep,q
2 = Hp(S̄ ,Rq( f̄ ◦ h)∗(OY (KY + ⌜D̄′⌝)))⇒ Hp+q(Y,KY + ⌜D̄′⌝).

For any positive integer m1, replacing A1 by m1A1, the above argument still
works. When m1 is sufficiently large, by the Serre vanishing theorem, for any
positive integer p and any integer q,

Hp(S̄ ,Rq( f̄ ◦ h)∗(OY (KY + ⌜D̄′⌝))) = 0.

Also the coherent sheaf Rq( f̄ ◦h)∗(OY (KY +⌜D̄′⌝)) on S̄ is generated by global
sections.

By the spectral sequence, when q > 0, H0(S̄ ,Rq( f̄ ◦ h)∗(OY (KY + ⌜D̄′⌝))) =
0. Therefore, Rq( f̄ ◦ h)∗(OY (KY + ⌜D̄′⌝)) = 0. We conclude the theorem by
restricting on S . □

The next lemma shows that the conditions in the definitions of KLT and LC
defined in Sections 1.10 and 1.11 are birational properties:

Lemma 1.9.5 Let f : Y → X be a proper birational morphism between
smooth algebraic varieties and let B,C be R-divisors on X,Y supported on
normal crossing divisors such that f ∗(KX + B) = KY +C. Then the coefficients
of B are all contained in the open interval (−∞, 1) if and only if so are the
coefficients of C.

The same also holds for the condition that the coefficients are contained
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in the half-open interval (−∞, 1]. Moreover, in this case, assume that the ir-
reducible components of B with coefficients exactly 1 are disjoint, then the
coefficients of C − f −1

∗ B are all contained in the open interval (−∞, 1).

Proof As B = f∗C, if the coefficients of C are all contained in the open
interval (−∞, 1), then the coefficients of B are all contained in the open interval
(−∞, 1).

Conversely, assume that the coefficients of B are all contained in the open
interval (−∞, 1). First, we consider the case that f is a permissible blowup
with respect to the pair (X, B). Set B =

∑
biBi. Suppose that the center Z of the

blowup is of codimension r and contained in B1, . . . , Bs. Note that r ≥ s. The
coefficient e of the exceptional divisor E of f in C is given by

e =
s∑

j=1

b j + 1 − r.

As b j < 1, we have e < 1. Since the coefficients of other prime divisors of
C coincide with those of B, the coefficients of C are all contained in the open
interval (−∞, 1).

The general case can be reduced to the above case by applying Theorem 1.6.4.
The later part can be proved similarly. □

We can also prove the following lemma which will be used in Section 1.11:

Lemma 1.9.6 Fix an n-dimensional pair (X, B) of a normal algebraic variety
and an effective R-divisor such that KX + B is R-Cartier and let P be a point
on X. Take effective Cartier divisors D1, . . . ,Dn passing through P such that
P is an irreducible component of

⋂
Di. Then there exists a log resolution f :

Y → (X, B +
∑

Di) such that if we write KY + C = f ∗(KX + B +
∑

Di), then
there exists an irreducible component C1 of C with coefficient at least 1 and
f (C1) = {P}.

Proof We may assume that X is affine by shrinking X. Write Di = div(hi),
where hi are regular functions on X. Define the morphism h : X → Z = An by
h = (h1, . . . , hn). By assumption, h is quasi-finite in a neighborhood of P. Take
E1, . . . , En to be coordinate hyperplanes of Z, and h∗Ei = Di by construction.
Take g : Z′ → Z to be the blowup at the origin and take F to be the exceptional
divisor, we get g∗(KZ +

∑
Ei) = KZ′ + F +

∑
g−1
∗ Ei. As differential forms on Z

with poles along
∑

Ei can be pulled back by h, h∗(KZ +
∑

Ei) ≤ KX +B+
∑

Di.
By taking a log resolution f : Y → (X, B+

∑
Di) which factors through X×Z Z′,

we may assume that the exceptional set contains a prime divisor C1 mapping
onto F, and this satisfies the requirements. □
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Using the relative version of the vanishing theorem, it is easy to show the
following generalization:

Theorem 1.9.7 ([76, Theorem 1.2.3]) Let X be a smooth algebraic variety,
let f : X → S be a projective morphism to another algebraic variety, and let
D be a relatively nef and relatively big R-divisor on X such that the support of
⌜D⌝ − D is a normal crossing divisor. Then for any positive integer p > 0,

Rp f∗(OX(KX + ⌜D⌝)) = 0.

Proof Since the assertion is local on S , we may assume that S is affine. By
Kodaira’s lemma, we can write D = A+E for some relatively ample R-Cartier
divisor A and some effective R-Cartier divisor E. If 0 < ϵ < 1, then D − ϵE =
(1 − ϵ)D + ϵA is relatively ample.

Take g : Y → X to be a log resolution of (X,D+E) in strong sense, and take
h : Y → S to be the composition with f . We can choose a sufficiently small
effective R-divisor A′ supported on the exceptional set of g such that −A′ is
g-ample and D′ = g∗(D − ϵE) − A′ is h-ample. By Theorem 1.9.4, for any
positive integer p,

Rph∗(OY (KY + ⌜D′⌝)) = Rpg∗(OY (KY + ⌜D′⌝)) = 0.

By the spectral sequence

Ep,q
2 = Rp f∗(Rqg∗(OY (KY + ⌜D′⌝)))⇒ Rp+qh∗(OY (KY + ⌜D′⌝)),

Rp f∗(g∗(OY (KY + ⌜D′⌝))) = 0 holds for p > 0.
Take ϵ and A′ to be sufficiently small, then ⌜D′⌝ = ⌜g∗D⌝. Take B = ⌜D⌝−D

and g∗(KX + B) = KY + C, by Lemma 1.9.5, the coefficients of C are less than
1. Therefore, by

g∗(KX + ⌜D⌝) = g∗(KX + B + D) = KY +C + g∗D ≤ KY + ⌜g∗D⌝

(here note that C+g∗D is an integral divisor) and g∗(KY +⌜g∗D⌝) = KX +⌜D⌝,
we have

g∗(OY (KY + ⌜D′⌝)) = OX(KX + ⌜D⌝),

which proves the theorem. □

Higher dimensional algebraic geometry became greatly developed since the
following result was proved:

Corollary 1.9.8 (Kawamata–Viehweg vanishing theorem [54, 139]) Let X be
a smooth projective algebraic variety and let D be a nef and big R-divisor on
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X such that the support of ⌜D⌝ − D is a normal crossing divisor. Then for any
positive integer p > 0,

Hp(X,KX + ⌜D⌝) = 0.

1.10 KLT singularities for pairs

We can define various singularities for a pair (X, B), where X is a normal alge-
braic variety and B is an R-divisor on X. B is called the boundary of the pair for
historical reasons. These singularities appear naturally in the minimal model
theory. Vanishing theorems can be also generalized to these singularities. The
characteristic of the base field is always assumed to be 0 if not specified.

First, we define the KLT condition. This is a very natural condition corre-
sponding to the L2-condition in complex analysis. It does not depend on the
choice of log resolutions. Furthermore, it is easy to handle since it satisfies
the so-called “open condition” in the sense that it is stable under perturbation
of the divisors. The KLT condition defines a category in which the minimal
model theory works most naturally and easily.

For simplicity, sometimes we denote a pair (X, B) and a morphism f : X →
S together by a morphism f : (X, B)→ S .

Definition 1.10.1 A pair (X, B) is KLT if it satisfies the following conditions:

(1) KX + B is R-Cartier.
(2) The coefficients of B are contained in the open interval (0, 1).
(3) There exists a log resolution f : Y → (X, B) such that if we write f ∗(KX +

B) = KY + C, then the coefficients c j of C =
∑

c jC j are contained in
(−∞, 1). Here C j are distinct prime divisors.

Condition (1) is necessary in order to define the R-divisor C in condition (3).
The support of C is contained in the union of the set-theoretic inverse image
of the support of B and the exceptional set of f , which is a normal crossing
divisor. The coefficients c j of C play an important role in higher dimensional
algebraic geometry. Further, −c j is called the discrepancy coefficient and 1−c j

is called the log discrepancy coefficient.
Historically, KLT singularity is just called log terminal singularity in [55].
Condition (3) in the definition of KLT does not depend on the choice of log

resolutions:

Proposition 1.10.2 Assume that (X, B) satisfies conditions (1) and (2) in Def-
inition 1.10.1 and there exists a log resolution f : Y → (X, B) in weak sense
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satisfying condition (3). Then (X, B) is KLT. Moreover, for any log resolution
f ′ : Y ′ → (X, B) in weak sense, condition (3) in Definition 1.10.1 holds.

Proof For two log resolutions f1 : Y1 → X, f2 : Y2 → X, there exists a third
log resolution f3 : Y3 → X dominating them. That is, there exist morphisms
gi : Y3 → Yi (i = 1, 2) such that f3 = fi ◦ gi. Therefore, the assertion follows
from Lemma 1.9.5. □

The following proposition is obvious:

Proposition 1.10.3 (1) A pair (X, B) is KLT if and only if there exists an
open covering {Xi} of X such that the pairs (Xi, B|Xi ) are all KLT.

(2) Let (X, B) be a KLT pair and let B′ be another effective R-divisor such that
B ≥ B′ and B − B′ is R-Cartier, then (X, B′) is again KLT.

(3) When X is a normal complex analytic variety, we can define the KLT condi-
tion similarly by using complex analytic resolution of singularities. When
X is a complex algebraic variety, for a pair (X, B), the algebraic KLT con-
dition and the analytic KLT condition are equivalent.

Remark 1.10.4 Take regular functions h1, . . . , hr on the polydisk X = ∆n =

{(z1, . . . , zn) ∈ Cn | |zi| < 1} and write the corresponding divisors by Bi =

div(hi). Take real numbers bi ∈ (0, 1). Then (X, B =
∑

biBi) is KLT if and only
if the function h =

∏
|hi|
−bi is locally L2 everywhere.

Indeed, the L2-condition on integrability can be studied via resolutions of
singularities. When the support of B is a normal crossing divisor, the absolute
value of a regular function with poles along B satisfies the L2-condition if and
only if the coefficients of B are in (−∞, 1), which is exactly the KLT condition.

We introduce quotient singularities as an important example of KLT pairs.
An algebraic variety X is said to have quotient singularities if it is a quotient

variety of a smooth algebraic variety in an étale neighborhood of each point
P. That is, there exists a neighborhood U of P, an étale morphism g : V → U
such that P ∈ g(V), and a smooth algebraic variety Ṽ with a finite group action
G such that V � Ṽ/G.

Example 1.10.5 Fix a positive integer r and integers a1, . . . , an. Define the
action of the cyclic group G = Z/(r) on the affine space X̃ = An by zi 7→ ζ

ai zi.
Here (z1, . . . , zn) are coordinates of X̃ and ζ is a primitive rth root of 1. Then the
quotient space X = X̃/G has only quotient singularities. The image P0 of the
origin might or might not be an isolated singularity, depending on the values
of ai. X is said to have a cyclic quotient singularity of type 1

r (a1, . . . , an) at P0.
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Proposition 1.10.6 For an algebraic variety X with quotient singularities,
the pair (X, 0) with divisor B = 0 is KLT.

Proof As discrepancy coefficients remain unchanged under étale morphisms,
we may assume that X is a global quotient variety. That is, there is a smooth
algebraic variety X̃ and a finite group G such that X = X̃/G. It is not hard to
see that KX is Q-Cartier, indeed, |G| · KX is Cartier.

Take a log resolution f : Y → X and write f ∗KX = KY + C. Take Ỹ to
be the normalization of Y in the function field k(X̃) and take f̃ : Ỹ → X̃ and
πY : Ỹ → Y to be the induced morphisms, write f̃ ∗KX̃ = KỸ + C̃. Take a prime
divisor E on Y contained in the exceptional set of f and take a prime divisor
Ẽ on Ỹ such that πY (Ẽ) = E. Denote the coefficients of E, Ẽ in C, C̃ by c, c̃,
respectively, denote the ramification index of Ẽ with respect to πY by e, then
we have

ce = c̃ + e − 1.

Here c̃ ≤ 0 as X̃ is smooth, hence c < 1. □

A KLT pair admits the following special log resolution. We call it a very log
resolution in this book.

Proposition 1.10.7 Let (X, B) be a KLT pair consisting of a normal algebraic
variety and an R-divisor. Then there exists a log resolution f : Y → (X, B)
such that if we write f ∗(KX + B) = KY + C, then the support of the R-divisor
C′ = max{C, 0} is a disjoint union of smooth prime divisors.

Proof Fix a log resolution f0 : Y0 → (X, B) and write f ∗0 (KX + B) = KY0 +C0.
Choose two prime divisors in C0 and blowup along their intersection, we get
g1 : Y1 → Y0. The composition with f0 gives a new log resolution f1 : Y1 → X.
We will show that a very log resolution can be constructed by repeating this
operation.

Write C0 =
∑

c0 jC0 j. Take a positive number n such that the inequality
c0 j ≤ 1 − 1

n holds for all j. n will be fixed in the following process.
For any log resolution f : Y → (X, B), write f ∗(KX + B) = KY + C and

C =
∑

c jC j. Note that c j ≤ 1 − 1
n for all j by the proof of Lemma 1.9.5. We

define a sequence of integers r( f ) = (r3( f ), . . . , r2n( f )) by the formula

ri( f ) = #{( j1, j2) | j1 < j2,C j1 ∩C j2 , ∅, 2 −
i
n
< c j1 + c j2 ≤ 2 −

i − 1
n
}.

For two sequences (r3, . . . , r2n) and (r′3, . . . , r
′
2n), we consider the lexicograph-

ical order. As ri ≥ 0, the set of sequences (r3, . . . , r2n) satisfies the DCC (short
for descending chain condition). That is, there is no infinite strictly decreasing
chain.
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For a given f , take the minimal i such that ri( f ) , 0 and take a pair ( j1, j2)
realizing it. That is, j1 < j2, C j1 ∩C j2 , ∅, and 2− i

n < c j1 + c j2 ≤ 2− i−1
n . Take

g : Y ′ → Y to be the blowup along center Z = C j1 ∩ C j2 , denote f ′ = f ◦ g,
and write ( f ′)∗(KX +B) = KY ′ +C′. The coefficient e of the exceptional divisor
E = Exc(g) in C′ satisfies 1 − i

n < e ≤ 1 − i−1
n .

The construction of Y ′ kills the intersection of C j1 and C j2 , and produces the
intersections of E with the strict transforms of C j1 , C j2 , and C j which intersect
with C j1 ∩C j2 . Note that e+c j ≤ 2− i

n as c j ≤ 1− 1
n . So these new intersections

do not contribute to rk( f ′) for k ≤ i. Therefore, rk( f ′) = rk( f ) = 0 for k < i
and ri( f ′) = ri( f ) − 1, which means that r( f ′) < r( f ). Since there is no infinite
strictly decreasing chain for the sequence r( f ), eventually we can get a log
resolution f such that ri( f ) = 0 for all i. This concludes the proof. □

Note that the log resolution in the above proposition is obtained by blowing
up repeatedly, it does not satisfy condition (2’) in Theorem 1.6.1. Also, the
proposition cannot be extended to DLT pairs.

We can generalize the vanishing theorem to KLT pairs:

Theorem 1.10.8 ([76, 1.2.5]) Let X be a normal algebraic variety, let f :
X → S be a projective morphism, let B be an R-divisor on X, and let D be a Q-
Cartier integral divisor on X. Assume that (X, B) is KLT and D−(KX+B) is rel-
atively nef and relatively big. Then for any positive integer p, Rp f∗(OX(D)) = 0.

Proof Take a log resolution g : Y → (X, B), denote h = f ◦ g, and write
g∗(KX + B) = KY +C. Note that g∗D − (KY +C) is h-nef and h-big. Here note
that the coefficients of g∗D are not necessarily integers.

By Theorem 1.9.7, for any positive integer p, Rpg∗(OY (⌜g∗D − C⌝)) =
Rph∗(OY (⌜g∗D −C⌝)) = 0. Hence Rp f∗(g∗(OY (⌜g∗D −C⌝))) = 0.

For a rational function r ∈ k(X) � k(Y), if divX(r) + D ≥ 0, then divY (r) +
g∗D ≥ 0. In this case, divY (r) + ⌞g∗D⌟ ≥ 0 and then divY (r) + ⌜g∗D − C⌝ ≥ 0
since the coefficients of C are contained in the open interval (−∞, 1). This
shows that the natural inclusion

g∗(OY (⌜g∗D −C⌝)) ⊂ g∗(OY (⌜g∗D⌝)) ≃ OX(D)

is indeed an isomorphism and the proof is finished. □

Remark 1.10.9 In a KLT pair (X, B), X has only rational singularities, and
hence is Cohen–Macaulay ([76, 1.3.6]).

This asserts that KLT is a “good” singularity. On the other hand, LC to be
introduced in Section 1.11 is not “good” in this sense. This fact will not be
used in this book.
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Consider a pair (X, B) consisting of a normal algebraic variety and an effec-
tive R-divisor such that KX + B is R-Cartier. In Chapter 2, we will introduce
the multiplier ideal sheaf in order to measure how far this pair is from being
KLT.

The set of points P ∈ X in whose neighborhood the pair (X, B) is not KLT
is a closed subset of X. It is called the non-KLT locus of the pair (X, B). The
cosupport of the multiplier ideal sheaf coincides with the non-KLT locus. Also,
the vanishing theorem can be generalized using multiplier ideal sheaves (see
Section 2.11).

1.11 LC, DLT, and PLT singularities for pairs

The KLT condition is easy to handle since it is an open condition with respect
to changes of coefficients of divisors. However, in the minimal model theory,
since it is necessary to consider the limits of divisors, it is necessary to consider
the closed condition called the LC condition. Among LC pairs, we call by KLT
pairs the pairs obtained by increasing boundaries of KLT pairs. The property of
general LC pairs is not so good, but for KLT pairs it is possible to have similar
discussions as for KLT pairs. Besides, there are conditions called DLT and PLT
(purely log terminal) between KLT and LC, which are a little complicated but
very useful. In this book, we develop the minimal model theory mainly for
DLT pairs. The characteristic of the base field is always assumed to be 0 if not
specified.

1.11.1 Various singularities

Definition 1.11.1 A pair (X, B) is LC if it satisfies the following conditions:

(1) KX + B is R-Cartier.
(2) The coefficients of B are contained in the half-open interval (0, 1].
(3) There exists a log resolution f : Y → (X, B) such that if we write f ∗(KX +

B) = KY + C, then the coefficients c j of C =
∑

c jC j are contained in the
half-open interval (−∞, 1]. Here C j are distinct prime divisors.

When (X, B) is an LC pair, (X, B) is said to have log canonical singularities.
Same as Proposition 1.10.2, condition (3) above does not depend on the choice
of log resolutions. Also, the same assertion as in Proposition 1.10.3 holds for
LC pairs.

Example 1.11.2 The property of singularities of LC pairs is not always good.
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Let Z be a smooth projective n-dimensional algebraic variety such that KZ ∼

0, that is, ωZ � OZ . Take an ample invertible sheaf L and take the total space
Y = SpecZ(

⊕∞

m=0 L⊗m) of the dual sheaf L∗. Y admits an A1-bundle struc-
ture over Z. Denote X = Spec(

⊕∞

m=0 H0(Z, L⊗m)), there is a natural birational
morphism f : Y → X which contracts the 0-section E of Y → Z to a point
P = f (E).

By the adjunction formula (KY + E)|E ∼ KE ∼ 0, we have KY + E ∼ 0 and
KX ∼ 0, which implies that f ∗KX ∼ KY + E. Hence (X, 0) is LC.

The higher direct images of OY are supported on the singular point P of X:

Rp f∗OY �
∞⊕

m=0

Hp(Z, L⊗m) ⊃ Hp(Z,OZ).

For p = n, Hn(Z,OZ) , 0, hence X is not a rational singularity. Moreover, if Z
is an Abelian variety, then for 0 < p ≤ n, the right-hand side is not 0, and X is
not Cohen–Macaulay.

As the property of singularities of LC pairs is not always good, we consider
intermediate conditions:

Definition 1.11.3 A pair (X, B) is DLT if it satisfies the following conditions:

(1) KX + B is R-Cartier.
(2) The coefficients of B are contained in the half-open interval (0, 1].
(3) There exists a log resolution f : Y → (X, B) such that if we write f ∗(KX +

B) = KY + C, then the coefficients c j of C =
∑

c jC j are contained in the
open interval (−∞, 1) for those C j contained in the exceptional set of f .

A pair (X, B) is PLT if it satisfies the above conditions (1) and (2) and the
following condition (3’):

(3’) For any log resolution f : Y → (X, B), if we write f ∗(KX+B) = KY +C, then
the coefficients c j of C =

∑
c jC j are contained in the open interval (−∞, 1)

for those C j contained in the exceptional set of f .

Remark 1.11.4 (1) In [76], a condition called WLT (short for weak log ter-
minal) is considered. The definition of WLT is by assuming further that the
log resolution in condition (3) of the definition of DLT is in strong sense.
By using similar argument as in Proposition 1.10.2, it can be shown that
DLT and WLT are indeed equivalent ([136]). In this book, we will just use
DLT rather than WLT.

(2) For a log resolution f : Y → X of (X, B), when considering the relation
f ∗(KX + B) = KY +C, sometimes we just write “a morphism f : (Y,C)→
(X, B)”.
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Example 1.11.5 (1) Take the affine space X = An and coordinate hyper-
planes B1, . . . , Bn, denote B =

∑
biBi. Then (X, B) is KLT (respectively,

PLT, DLT) if and only if 0 ≤ bi < 1 for all i (respectively, 0 ≤ bi ≤ 1 for
all i and bi < 1 except for at most one i, 0 ≤ bi ≤ 1 for all i). Furthermore,
DLT and LC coincide.

(2) Let X = A2/Z2 be the quotient of the 2-dimensional affine space A2 with
coordinates x, y by the order 2 cyclic group Z2 action (x, y) 7→ (−x,−y).
That is, it is a cyclic quotient singularity of type 1

2 (1, 1). This singularity
is the same as the ordinary double point in Example 1.1.4(1). Denote the
image of the coordinate axes in X by B1, B2 and take B =

∑
biBi. Then

(X, B) is KLT (respectively, PLT, LC) if and only if 0 ≤ bi < 1 for all i
(respectively, 0 ≤ bi1 ≤ 1 for one i1 and 0 ≤ bi2 < 1 for the other i2,
0 ≤ bi ≤ 1 for all i). Furthermore, PLT and DLT coincide.

Indeed, the blowup f : Y → X of X along the image of the origin
(0, 0) is a log resolution. The exceptional set E is isomorphic to P1, f ∗Bi =

f −1
∗ Bi +

1
2 E, and f ∗KX = KY . So the assertion can be checked easily.

(3) Take X = A2 to be the 2-dimensional affine space with coordinates x, y
and a prime divisor D = div(x2 + y3). We determine the necessary and
sufficient condition for the pair (X, dD) to be KLT or LC for a real number
d (see Figure 1.1).

We can construct a log resolution of (X, dD) in the following way. First,
take the blowup f1 : Y1 → X along the origin P0 = (0, 0), the exceptional
set E1 is a prime divisor isomorphic to P1. The strict transform D1 = f −1

1∗ D
is smooth, E1 and D1 intersect at one point P1.

Take the blowup f2 : Y2 → Y1 along P1, the exceptional set E2 is a prime
divisor isomorphic to P1. Three smooth prime divisors E2, D2 = f −1

2∗ D1,
and E′1 = f −1

2∗ E1 intersect at one point P2.

Take the blowup f3 : Y = Y3 → Y2 along P2, the exceptional set E3

P0

D

f1
←− P1

E1 D1

f2
←− P2

E2 D2

E′1

f3
←−

E′′1

D3

E′2

E3

Figure 1.1 A log resolution of (X,D).
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is a prime divisor isomorphic to P1. The union of 4 prime divisors E3,
D3 = f −1

3∗ D2, E′′1 = f −1
3∗ E′1, and E′2 = f −1

3∗ E2 is a normal crossing divisor.
The composition f : Y → X is a log resolution of (X, dD). We have

KY = f ∗KX +E′′1 +2E′2+4E3 and f ∗D = D3+2E′′1 +3E′2+6E3. Therefore,
the pair (X, dD) is KLT (respectively, LC) if and only if 0 ≤ d < 5/6
(respectively, 0 ≤ d ≤ 5/6).

(4) Consider the example in Examples 1.1.4(2) or 1.2.4(2). In addition to the
prime divisors D1,D2, consider prime divisors D3,D4 defined by y = z = 0
or y = w = 0. Note that D3 + D4 and KX are Cartier divisors. Take B =∑4

i=1 Di and consider the pair (X, B). Take the resolution of singularities f :
X′ → X as in Example 1.2.4(2), then B′ =

∑4
i=1 f −1

∗ Di is a normal crossing
divisor. As f is isomorphic in codimension 1, f ∗(KX + B) = KX′ + B′.

The pair (X, B) is LC but not DLT. Here as the exceptional set of f
is not a normal crossing divisor, f is a log resolution in weak sense, but
not a log resolution in the sense of Theorem 1.6.1(2). In order to obtain a
log resolution, we need to do further blowups on X′ along the exceptional
set of f and that will induce an exceptional divisor with log discrepancy
coefficient 1. However, this is not a rigorous proof of the fact that (X, B) is
not DLT.

The blowup g : Y → X along the origin (0, 0, 0, 0) of X is a log resolu-
tion. The exceptional set E is a prime divisor isomorphic to P1 × P1 and
C =

∑4
i=1 g−1

∗ Di+E is a normal crossing divisor. Since g∗(KX+B) = KY+C,
(X, B) is LC.

(5) Take a smooth projective algebraic curve C of genus 1 and two line bundles
L1, L2 of negative degrees. Take Y to be the total space of the vector bundle
L = L1 ⊕ L2 and denote by C1,C2, E the subvarieties of Y corresponding
to subbundles L1 ⊕ 0, 0 ⊕ L2, 0 ⊕ 0, respectively. Note that E � C. Denote
X = Spec(

⊕∞

m=0 H0(C, L⊗−m)), there is a natural birational morphism f :
Y → X which contracts E to a point P = f (E). Write Bi = f (Ci). Then
f ∗(KX + B1 + B2) = KY +C1 +C2 and the pair (X, B1 + B2) is not DLT but
LC. Indeed, X is not a rational singularity. The pairs (Bi, 0) are also LC.

We introduce one more definition:

Definition 1.11.6 A pair (X, B) is KLT if it satisfies the following conditions:

(1) (X, B) is LC.
(2) There is another effective R-divisor B′ such that B′ ≤ B and (X, B′) is KLT.

In this situation, for any positive real number ϵ smaller than 1, (X, (1− ϵ)B+
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ϵB′) is KLT. That is, KLT is the limit of KLT. For this reason, different from
general LC pairs, it shares similar properties as a KLT pair.

Toric varieties provide good examples (see [79, 31] for details):

Proposition 1.11.7 Let T be an algebraic torus and let T ⊂ X be a toric va-
riety, that is, a T-equivariant open immersion into a normal algebraic variety
with a T-action. Consider the complement set B = X \ T as a reduced divisor.
Then the following assertions hold:

(1) The pair (X, B) is LC. Moreover, it is KLT.
(2) X is Q-factorial if and only if the corresponding fan consists of simplicial

cones.

Proof (1) Take a T -equivariant resolution of singularities f : Y → X such
that f −1(T ) � T and C = Y \ f −1(T ) is a normal crossing divisor.

Denote dim T = n and take coordinates x1, . . . , xn by pulling back from the
standard embedding T ⊂ An. The regular differential form θ = dx1/x1 ∧ · · · ∧

dxn/xn on T can be extended to a logarithmic differential form on X and gives
a global section of KX + B without zeros. Therefore, KX + B ∼ 0.

Similarly θ extends to a global section of KY + C without zeros. Therefore,
the equality f ∗(KX + B) = KY +C holds, and hence (X, B) is LC.

As T is affine, there exists an effective Cartier divisor B′ with support B. For
a sufficiently small real number ϵ > 0, (X, B − ϵB′) is KLT, and hence (X, B) is
KLT.

(2) We may assume that X is affine and its fan consists of a single cone.
Irreducible components Bi of B correspond to points Pi on 1-dimensional rays
of this cone σ. The condition for Bi becoming a Q-Cartier divisor is that there
exists a regular function on X such that the corresponding divisor is a nonzero
multiple of Bi. This is equivalent to saying that there exists a linear functional
on σ which takes value 1 at Pi and 0 at all points on other rays, which is
equivalent to σ being simplicial. □

The following is a corollary of Lemma 1.9.6.

Corollary 1.11.8 Let (X, B) be an n-dimensional KLT pair and let P be a
point. Take sufficiently general effective Cartier divisors D1, . . . ,Dn, E passing
through P and a positive number 1 > ϵ > 0. Then there exists a sufficiently
small number δ > 0 such that the pair (X, B +

∑
(1 − δ)Di + ϵE) is KLT in a

punctured neighborhood of P, but not LC at P.

Proof As D1, . . . ,Dn, E are general outside P, take a log resolution f̄ : Y →
(X, B) and write f̄ ∗(KX + B) = KY + C̄, we may assume that C̄ + f̄ ∗(

∑
Di + E)

is normal crossing outside f̄ −1(P). The coefficients of D1, . . . ,Dn, E in the pair
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(X, B+
∑

(1 − δ)Di + ϵE) are strictly smaller than 1 for δ > 0, hence the pair is
KLT in a punctured neighborhood of P.

On the other hand, take the log resolution f and prime divisor C1 as in
Lemma 1.9.6, then the coefficient of C1 in f ∗E is at least 1 and the coefficient
of C1 in f ∗(KX + B +

∑
Di + ϵE) is strictly larger than 1. Hence (X, B +

∑
(1 −

δ)Di + ϵE) is not LC at P for sufficiently small δ > 0. □

1.11.2 The subadjunction formula

We will look at the behavior of singularities when restricting a given pair to
lower dimensions.

First, we show Shokurov’s connectedness lemma ([128], [91, Theorem 17.4]),
which is a consequence of the vanishing theorem:

Lemma 1.11.9 (Connectedness lemma) Let (X, B) be a pair of a normal vari-
ety and an R-divisor such that KX + B is R-Cartier, and let f : (Y,C)→ (X, B)
be a log resolution in weak sense. Write C = C+ − C−, where C+,C− are
effective R-divisors with no common irreducible component. Then the natu-
ral homomorphism OX → f∗O⌞C+⌟ is surjective and the induced morphism
Supp(⌞C+⌟)→ f (Supp(⌞C+⌟)) has connected geometric fibers.

Proof Note that

−⌞C⌟ − (KY +C − ⌞C⌟) ≡ − f ∗(KX + B)

is f -nef and f -big. As the coefficients of C − ⌞C⌟ are contained in the open
interval (0, 1), by the vanishing theorem (Theorem 1.9.7),

R1 f∗(OY (−⌞C⌟)) = 0.

Since ⌞C⌟ = ⌞C+⌟ − ⌜C−⌝, the natural homomorphism

f∗(OY (⌜C−⌝))→ f∗(O⌞C+⌟(⌜C−⌝))

is surjective. Since the support of the effective divisor C− is contained in the
exceptional set, the natural homomorphism f∗OY → f∗(OY (⌜C−⌝)) is bijective.
In the commutative diagram

OX � f∗OY −−−−−−→ f∗O⌞C+⌟y y
f∗(OY (⌜C−⌝)) −−−−−−→ f∗(O⌞C+⌟(⌜C−⌝)),

the left vertical arrow is bijective, the bottom horizontal arrow is surjective, and
the right vertical arrow is injective, hence the top horizontal arrow is surjective.
We conclude the proof. □
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Corollary 1.11.10 A DLT pair (X, B) is PLT if and only if the irreducible
components of ⌞B⌟ are disjoint from each other.

Proof The sufficiency is easy. In order to show the converse direction, sup-
pose that two irreducible components B1, B2 of ⌞B⌟ intersect. Take a log res-
olution f : (Y,C) → (X, B) as in Lemma 1.11.9, then the strict transforms
f −1
∗ B1, f −1

∗ B2 are contained in the same connected component of the support
of ⌞C+⌟. Then there exists an irreducible component of ⌞C+⌟− f −1

∗ B1 intersect-
ing f −1

∗ B1. Blowing up along the intersection, the coefficient of the exceptional
divisor is 1, which means that (X, B) is not PLT. □

Corollary 1.11.11 For a DLT pair (X, B), every irreducible component of
⌞B⌟ is normal.

Proof We may assume that X is affine. Take B1 to be an irreducible compo-
nent of ⌞B⌟. Since there are sufficiently many regular functions on X, we can
take a general effective R-divisor B′ R-linearly equivalent to B − B1 such that
⌞B′⌟ = 0. Indeed, take a sufficiently large integer N and take general global
sections s1, . . . , sN of the divisorial sheafOX(⌞B⌟−B1), then div(si) ∼ ⌞B⌟−B1

and we may just take

B′ = B − B1 +
∑

div(si)/N − ⌞B⌟ + B1 = B − ⌞B⌟ +
∑

div(si)/N.

Since si are taken to be general, a log resolution f : Y → X of (X, B)
is also a log resolution of (X, B1 + B′). So (X, B1 + B′) is still DLT. Write
KY + C = f ∗(KX + B1 + B′), then ⌞C+⌟ = f −1

∗ B1. Therefore, Lemma 1.11.9
implies that D is normal. □

Remark 1.11.12 According to this corollary, the irreducible components of
⌞B⌟ have no “self-intersection”. For example, if X is a smooth complex alge-
braic variety and B is a reduced divisor normal crossing in analytic sense but
not simple normal crossing, then (X, B) is not DLT. This is derived from the
definition of normal crossing divisors in the definition of log resolutions.

Induction arguments on dimensions using the adjunction formula is compat-
ible with the property of DLT. The reason is the following result:

Theorem 1.11.13 (Subadjunction formula) Let (X, B) be a DLT pair and let Z
be an irreducible component of ⌞B⌟. Then we can naturally define an effective
R-divisor BZ on Z satisfying

(KX + B)|Z = KZ + BZ ,

and the pair (Z, BZ) is again DLT. Moreover, if (X, B) is PLT in a neighborhood
of Z, then (Z, BZ) is KLT.
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Proof Take a log resolution f : (Y,C) → (X, B) such that the coefficients
of exceptional prime divisors in C are less than 1. Write W = f −1

∗ Z, CW =

(C −W)|W , and BZ = ( f |W )∗CW . Here the coefficients of CW are at most 1, so
are those of BZ .

Here we claim that the coefficients of BZ are contained in the half-open
interval (0, 1]. To see that BZ ≥ 0, after cutting X by general hyperplanes, we
may assume that dim X = 2. In this case, f : (Y,C) → (X, B) factors through
the minimal resolution of X (see Proposition 1.13.8). Hence there exists a pair
(Y1,C1) and birational morphisms f1 : Y → Y1, f2 : Y1 → X such that f =
f2 ◦ f1 and KY1 +C1 = f ∗2 (KX + B), and moreover C1 ≥ 0. Then BZ ≥ 0.

As (KY + C)|W = KW + CW , we get (KX + B)|Z = KZ + BZ . Hence KZ + BZ

is R-Cartier. Note that f |W is a log resolution of (Z, BZ) and ( f |W )∗(KZ + BZ) =
KW +CW .

Recall that every irreducible component of C with coefficient 1 is a strict
transform of an irreducible component of ⌞B⌟. Take D to be an irreducible
component of CW with coefficient 1, then D is contained in the intersection of
f −1
∗ ⌞B⌟ −W and W. Since Exc( f ) ∪ f −1

∗ ⌞B⌟ is a normal crossing divisor, D is
not contained in Exc( f ). Therefore, D is not contained in the exceptional set
of f |W and hence (Z, BZ) is DLT.

The latter part is obvious. □

Remark 1.11.14 It is possible that BZ , 0 even if B = Z, that is, KZ might
be smaller than expected, and this is why we use the word “sub”. For example,
consider the quadric surface X defined by the equation xy = z2 in the affine
space C3 with coordinates x, y, z and the divisor Z on X defined by the equation
x = z = 0. Then the pair (X,Z) is DLT and the subadjunction formula in this
case is (KX + Z)|Z = KZ +

1
2 P (see Example 1.3.2).

For a pair (X, B), a subvariety Z of X is called an LC center if there exists a
log resolution f : (Y,C) → (X, B) such that there is an irreducible component
Ci of ⌞C+⌟ with Z = f (Ci).

Lemma 1.11.15 Fix a log resolution f : (Y,C)→ (X, B) of an LC pair (X, B).
Then the LC centers of the pair (X, B) are exactly the images of irreducible
components of intersections of several irreducible components of ⌞C+⌟.

Proof Take the blowup Y along an irreducible component of the intersection
of several irreducible components of ⌞C+⌟, we get a new log resolution and
the exceptional divisor has coefficient 1 in the new boundary. Hence the im-
age is an LC center. On the other hand, by an easy computation, blowing up
along other centers gives an exceptional divisor with coefficient strictly smaller
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than 1. By Theorem 1.6.4, any log resolution is dominated by a log resolution
obtained in this way, which concludes the proof. □

In particular, when (X, B) is DLT, there exists a log resolution f : (Y,C) →
(X, B) with ⌞C+⌟ = f −1

∗ ⌞B⌟, hence an LC center is nothing but an irreducible
component of the intersection of several irreducible components of ⌞B⌟. In
other words, the reduced part of the boundary of the DLT pairs obtained by
applying the subadjunction formula several times to (X, B) are LC centers.

We extend the vanishing theorem to DLT pairs. Note that the condition “rel-
atively ample” cannot be replaced by “relatively nef and relatively big” as DLT
is not an open condition.

Theorem 1.11.16 Let X be a normal algebraic variety, let f : X → S be
a projective morphism, let B be an R-divisor on X, and let D be a Q-Cartier
integral divisor on X. Assume that the pair (X, B) is DLT and D − (KX + B) is
relatively ample. Then for any positive integer p, Rp f∗(OX(D)) = 0.

Proof Take a log resolution g : (Y,C) → (X, B) in strong sense and denote
h = f ◦ g. By the definition of DLT, we may assume that the coefficients of
exceptional divisors in C are strictly less than 1, note that here we use the fact
that DLT is equivalent to WLT (see Remark 1.11.4). Take a sufficiently small
effective R-divisor A supported on the exceptional set of g such that −A is g-
ample, ⌞C + A⌟ = ⌞C⌟, and g∗D− (KY +C + A) is h-ample. Take a sufficiently
small number ϵ > 0 such that g∗D − (KY + (1 − ϵ)C + A) is again h-ample.

Write D′ − C′ = g∗D − ((1 − ϵ)C + A), where D′ is a divisor with inte-
gral coefficients and C′ is an R-divisor with coefficients in the interval (0, 1),
in other words, take D′ = ⌜g∗D − ((1 − ϵ)C + A)⌝. Since the support of C′

is a normal crossing divisor, by Theorem 1.9.3, for p > 0, Rpg∗(OY (D′)) =
Rph∗(OY (D′)) = 0. Therefore, for p > 0, Rp f∗(g∗(OY (D′))) = 0. Since g∗D′ =
D by definition and D′ ≥ ⌞g∗D⌟ as the coefficients of (1 − ϵ)C + A are smaller
than 1, we have g∗(OY (D′)) = OX(D) and the theorem is proved. □

Here we remark that we can give an alternative proof by applying Lemma 2.1.8
to replace (X, B) by a KLT pair and then applying Theorem 1.9.3 directly.

1.11.3 Terminal and canonical singularities

In the end of this section, we introduce terminal singularities and canonical sin-
gularities. These singularities are not considered in the main part of this book.
However, they are important in applications and have a longer history than
KLT, DLT, LC, et cetera in dimensions 3 and higher. Originally 3-dimensional
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algebraic geometry was successful because these singularities can be classi-
fied. However, classification of singularities is impossible in higher dimen-
sions, and it is replaced by using log pairs and induction on dimensions.

Definition 1.11.17 A normal algebraic variety X is said to have canonical
singularities if the following conditions are satisfied:

(1) KX is Q-Cartier.
(2) For a resolution of singularities f : Y → X, if write f ∗KX = KY + C, then
−C is effective.

Furthermore, X is said to have terminal singularities if the following is satis-
fied:

(3) The support of −C coincides with the divisorial part of Exc( f ).

In terms of discrepancy coefficients, the feature of terminal singularities
(canonical singularities) is that all discrepancy coefficients are positive (non-
negative). It is easy to see that conditions (2) and (3) do not depend on the
choice of resolutions of singularities.

The concept of terminal and canonical singularities can be also extended to
pairs.

Definition 1.11.18 A pair (X, B) consisting of a normal algebraic variety X
and an effective R-divisor B on X is said to have canonical singularities if the
following conditions are satisfied:

(1) KX + B is R-Cartier.
(2) For any resolution of singularities f : Y → X, if write f ∗(KY+B) = KY+C,

then −C + f −1
∗ B is effective.

Furthermore, (X, B) is said to have terminal singularities if the following is
satisfied:

(3) The support of −C + f −1
∗ B coincides with the divisorial part of Exc( f ).

In conditions (2) and (3), it is not sufficient to check for only one log reso-
lution.

As will be explained in Section 2.5, discrepancy coefficients are nondecreas-
ing under the MMP, hence the MMP preserves types of singularities. That is,
when applying a birational map in the MMP to an algebraic variety with certain
singularities, we get an algebraic variety with the same type of singularities.
In other words, the MMP can be considered within the category of varieties
having certain singularities. In particular, when considering the MMP starting
from a smooth algebraic variety, everything is within the category of terminal



60 CHAPTER 1. ALGEBRAIC VARIETIES WITH BOUNDARIES

singularities. Note that 2-dimensional terminal singularities without bound-
aries are just smooth, that is the reason why it is not necessary to consider
singularities in the classical 2-dimensional MMP.

1.12 Minimality and log minimality

The minimality in the minimal model theory is defined by the minimality of
canonical divisors. A log minimal model is the log version of a minimal model,
where the log canonical divisor is minimized. The MMP is a process to find a
“minimal model” which is a birational model with good properties for a given
algebraic variety.

First, we define “minimality” by the property of singularities and numerical
property of canonical divisors:

Definition 1.12.1 (1) A projective morphism f : X → S from a normal al-
gebraic variety to another algebraic variety is said to be relatively minimal
over S if it satisfies the following conditions (a), (b). It is said to be rela-
tively minimal in weak sense over S if it satisfies the following conditions
(a’), (b).

(a) X has Q-factorial terminal singularities.
(a’) X has canonical singularities.
(b) KX is relatively nef over S .

(2) A projective morphism f : (X, B) → S from a pair consisting of a normal
algebraic variety and an R-divisor to another algebraic variety is said to
be relatively log minimal over S if it satisfies the following conditions (a),
(b). It is said to be relatively log minimal in weak sense over S if it satisfies
the following conditions (a’), (b).

(a) X is Q-factorial and the pair (X, B) is DLT.
(a’) The pair (X, B) is LC.
(b) KX + B is relatively nef over S .

The minimality in weak sense defined above leads to the minimality of the
canonical divisor KX and the log canonical divisor KX + B:

Proposition 1.12.2 (1) Let f : X → S be a relatively minimal morphism
in weak sense. Consider a projective morphism g : Y → S from another
normal algebraic variety and birational projective morphisms f ′ : Z → X
and g′ : Z → Y from a third normal algebraic variety with f ◦ f ′ = g ◦ g′.
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If KY is Q-Cartier, then the inequality ( f ′)∗KX ≤ (g′)∗KY holds. That is,
KX is minimal in birational equivalence classes.

(2) Let f : (X, B) → S be a relatively log minimal morphism in weak sense.
Consider a projective morphism g : (Y,C) → S from another pair of a
normal algebraic variety and an R-divisor, and birational projective mor-
phisms f ′ : Z → X and g′ : Z → Y from a third normal algebraic variety
with f ◦ f ′ = g ◦ g′. Furthermore, assume the following conditions:

(a) For each irreducible component Bi of B, its strict transform Ci = g′∗( f ′)−1
∗ Bi

is an irreducible component of C. If we denote the coefficients of Bi,Ci

by bi, ci, then the inequalities bi ≤ ci hold.
(b) For each irreducible component C j of C satisfying f ′∗ (g

′)−1
∗ C j = 0, its

coefficient c j is 1.

If KY + C is R-Cartier, then the inequality ( f ′)∗(KX + B) ≤ (g′)∗(KY + C)
holds. That is, KX + B is minimal in birational equivalence classes.

Proof (1) By the desingularization theorem we may assume that Z is smooth.
Write ( f ′)∗KX = KZ + E, (g′)∗KY = KZ + F.

Since X has canonical singularities, −E is effective. That is, KX is smaller
than KZ . So the condition on singularities guarantees the minimality locally.

In order to see the global property, we apply the negativity lemma (Lemma 1.6.3).
Write F − E = G+ −G−, where G+,G− are effective Q-divisors with no com-
mon irreducible component. Our goal is to show G− = 0. Suppose that G− , 0.
As −E is effective, the support of G− is contained in the support of F, which is
contracted by g′.

By Lemma 1.6.3, there exists a curve C contracted by g′ such that (G− ·C) <
0 and (G+ · C) ≥ 0. Note that ((KZ + F) · C) = 0. On the other hand, since KX

is nef,

0 ≤ ((KZ + E) ·C) = ((E − F) ·C) = −(G+ ·C) + (G− ·C) < 0

which is a contradiction. Therefore, G− = 0 and F − E is effective.

(2) We may assume that f ′, g′ are log resolutions. Write ( f ′)∗(KX + B) =
KZ + E and (g′)∗(KY +C) = KZ + F.

Since (X, B) is LC, the coefficients of E are at most 1. Therefore, if denote
by Ē the sum of the strict transform ( f ′)−1

∗ B and all exceptional divisors of f ′

with given coefficients 1, then ( f ′)∗(KX + B) is smaller than KZ + Ē. So the LC
condition guarantees the minimality locally.

Let us look at the global property. Write F − E = G+ − G−, where G+,G−

are effective R-divisors with no common irreducible component. Our goal is
to show G− = 0. Suppose that G− , 0.
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Once it is shown that the support of G− is contracted by g′, the conclusion
follows exactly as the proof of (1). In order to show that the support of G− is
contracted by g′, for any prime divisor R on Z, we are going to show that R is
not an irreducible component of G− if g′∗R = Q is a prime divisor on Y .

If f ′∗R = P is a prime divisor on X, by assumption (a), the coefficient of P in
B is not greater than that of Q in C. This holds even if P is not an irreducible
component of B in which case we just formally set the coefficient to be 0.
Therefore, the coefficient of R in F−E is nonnegative and it is not an irreducible
component of G−.

If f ′∗R = 0, by assumption (b), the coefficient of Q in C is 1 while that of R
in E is at most 1. Therefore, the coefficient of R in F − E is nonnegative and it
is not an irreducible component of G−. □

Remark 1.12.3 (1) In the minimal model theory in classical algebraic sur-
face theory, a minimal model is defined to be the minimal one under the
following relation using birational morphisms: For two smooth projective
algebraic surfaces X,Y , we define X ≤ Y if there exists a birational mor-
phism Y → X.

However, in dimensions 3 and higher, there are examples showing that
such a definition does not work ([26, 25]). Therefore, in the minimal model
theory discussed in this book, we consider projective algebraic varieties
with singularities, and define the minimal model by the size of canonical
divisors; the relation X ≤ Y between two birationally equivalent algebraic
varieties is defined by the inequality KX ≤ KY . Here the inequality of
divisors is by comparing the pullbacks on an appropriate birational model:
We write KX ≤ KY if f ∗KX ≤ g∗KY for birational projective morphisms
f : Z → X and g : Z → Y .

The relation (X, B) ≤ (Y,C) for log pairs is defined by f ∗(KX + B) ≤
g∗(KY + C) for birational projective morphisms f : Z → X and g : Z → Y
together with two conditions of (2) of the above proposition.

Such change of viewpoint has already been observed in the log version
of algebraic surfaces ([52]). The importance of considering the log version
showed up at that time. Furthermore, extending to the log version is indis-
pensable for the inductive proof of the existence of minimal models in this
book.

(2) From the above proposition, one can see that the minimality in weak sense
is equivalent to the minimality of canonical divisors. Furthermore, accord-
ing to Corollary 3.6.10 which is derived from the main theorems of this
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book, minimal models are maximal among minimal models in weak sense
under the relation defined by birational morphisms.

Looking at this locally, we can say that: Canonical singularities are char-
acterized by the property that the canonical divisors are locally minimal.
Furthermore, Q-factorial terminal singularities are maximal, among those
with canonical divisors locally minimal, under the relation defined by bi-
rational morphisms.

For pairs, the log minimality in weak sense is equivalent to the minimal-
ity of log canonical divisors. But as a DLT blowup can be further blown up,
it is impossible to construct a “maximal minimal model”. However, if the
minimal model is KLT, then we can construct a maximal minimal model
by Corollary 3.6.10. This is a pair with Q-factorial terminal singularities.

Looking at this locally, we can say that: LC pairs are characterized by
the property that the log canonical divisors are locally minimal. Further-
more, by looking at only KLT pairs, Q-factorial terminal pairs are maxi-
mal, among pairs with log canonical divisors locally minimal, under the
relation defined by birational morphisms.

Therefore, the theory requiring Q-factorial terminal singularities can be
regarded as “maximalist” and the theory requiring canonical singularities
or LC singularities can be regarded as “minimalist”. Models that are ex-
pected to be obtained using the MMP will be “maximalist”.

(3) Let α : X 99K Y be a birational map between normal algebraic varieties
projective over S . X,Y are said to be crepant or K-equivalent to each other
if there are birational projective morphisms f : Z → X, g : Z → Y from a
third normal algebraic variety with g = α◦ f such that f ∗KX = g∗KY . Here
the comparison of canonical divisors is by using rational differential forms
identified by the birational map. By the above proposition, birationally
equivalent minimal models are crepant to each other.

Furthermore, given effective R-divisors B,C on X,Y , assume that KX+B
and KY + C are R-Cartier. The pairs (X, B) and (Y,C) are said to be log
crepant or K-equivalent to each other if f ∗(KX + B) = g∗(KY + C), or
just crepant for simplicity. When considering minimal models with bound-
aries, only being birational is not enough, we should also pay attention to
how to define the boundaries. This is settled in Section 2.5.5.
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1.13 The 1-dimensional and 2-dimensional cases

In this section, we describe known results including the finite generation of
canonical rings in dimensions up to 2. Many of them are special phenomena
which only happen in dimensions up to 2. In particular, we describe the classi-
fication of DLT pairs in dimension 2. We obtain a subadjunction formula from
this, and apart from this formula, other results will not be used in subsequent
sections. For a DLT pair in arbitrary dimension, its structure in codimension 2
can be considered by cutting down the dimension by general hyperplanes and
reducing to the classification of DLT pairs in dimension 2.

1.13.1 The 1-dimensional case

First, we discuss the 1-dimensional case briefly. Take an algebraic curve X,
that is, a smooth projective 1-dimensional algebraic variety. Denote its genus
by g. If g = 0, then X � P1 and R(X,KX) � k. If g = 1, then KX ∼ 0 and
R(X,KX) � k[t]. These cases are simple.

In the following we consider the case g ≥ 2. This condition is equivalent to
X being of general type. It is also equivalent to that the degree of the canonical
divisor is positive deg(KX) > 0 since the degree of the canonical divisor KX is
2g − 2. The plurigenera are given by dim H0(X,mKX) = (2m − 1)(g − 1) for
m ≥ 2. As KX is ample, the canonical ring R(X,KX) is finitely generated and

X = Proj R(X,KX).

X is called a hyperelliptic curve if there exists a finite morphism π : X → P1

of degree 2. The canonical linear system |KX | is always free, but it is very ample
if and only if X is not a hyperelliptic curve. When X is a hyperelliptic curve,

|KX | = π
∗|OP1 (g − 1)|,

where π is the morphism corresponding to |KX |. In this case, |3KX | is very
ample ([44, IV.5]).

To be more specific, if X is not a hyperelliptic curve, then the canonical ring
is generated by the degree 1 part H0(X,KX) (a theorem of Max Noether [5, p.
117]). On the other hand, if X is a hyperelliptic curve, then degree up to 3 parts
are required to generate the canonical ring.

1.13.2 Minimal models in dimension 2

In the following we consider the 2-dimensional case. For details please refer to
[10]. Let X be an algebraic surface, that is, a 2-dimensional algebraic variety.
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Numerical geometry is particularly effective on algebraic surfaces. This is
because the intersection number becomes a symmetric bilinear form since
prime divisors are the same as curves. The following powerful theorem is often
used in algebraic surface theory. It can be used even for problems in higher di-
mensional algebraic geometry, by cutting by hyperplane sections and reducing
to algebraic surfaces (see Lemma 1.6.3).

Theorem 1.13.1 (Hodge index theorem [44, Theorem V.1.9]) Let A, B be
Cartier divisors on a proper 2-dimensional algebraic variety X. If (A2) > 0,
(A · B) = 0, and B . 0, then (B2) < 0.

Corollary 1.13.2 Let f : Y → X be a resolution of singularities of an al-
gebraic surface and let D be a nonzero divisor on Y supported in the excep-
tional set Exc( f ). Then (D2) < 0. Therefore, if the exceptional divisors of f
are E1, . . . , Er, then the matrix of intersection numbers [(Ei · E j)] is negative
definite.

Proof We may assume that X is projective. Take an ample divisor H on X,
then ( f ∗H · f ∗H) > 0 and ( f ∗H · D) = 0. If D ≥ 0, as Y is projective, D , 0
implies D . 0. Therefore, (D2) < 0. In general, we can write D = D+ − D− in
terms of the positive part and the negative part, then (D2) ≤ (D+)2 + (D−)2 <

0. □

In general, given a resolution of singularities f : Y → X, the dual graph Γ
can be constructed from the exceptional set as the following:

(1) Take vertices v1, . . . , vr of Γ corresponding to prime divisors E1, . . . , Er in
Exc( f ).

(2) Join vi, v j with an edge if two distinct prime divisors Ei, E j intersect, and
associate the edge with weight (Ei · E j).

(3) Associate each vertex vi with the self-intersection number (E2
i ) as its weight.

First of all, we recall the minimality of algebraic surfaces. The definition
of minimal models in algbraic surface theory is different from that in higher
dimensional algebraic geometry. Hence here we use “minimal in the classical
sense”. Given two smooth algebraic surfaces X,Y , the relation X ≥ Y is defined
by that there is a birational projective morphism f : X → Y . An algebraic
surface minimal under this relation is defined to be minimal in the classical
sense.

A curve C on X is called a (−1)-curve if C � P1 and the self-intersection
number (C2) = −1. If we blow up a smooth algebraic surface Y at a point
P, then the exceptional set is a (−1)-curve. Conversely, a (−1)-curve can be
contracted to a smooth point:
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Theorem 1.13.3 (Castelnuovo’s contraction theorem [44, Theorem V.5.7])
For a smooth algebraic surface X and a (−1)-curve C on X, there exists a bi-
rational projective morphism f : X → Y to another smooth algebraic surface
such that f (C) is a point and f induces an isomorphism X \C � Y \ f (C).

Minimality is characterized by the absence of (−1)-curve:

Theorem 1.13.4 ([44, Proposition V.5.3]) A smooth algebraic surface X is
minimal in the classical sense if and only if there is no (−1)-curve on X.

Corollary 1.13.5 For a smooth projective algebraic surface X, its minimal
model in the classical sense always exists.

Proof In the case that f : X → Y is a contraction of a (−1)-curve, the Picard
number decreases exactly by one: ρ(X) = ρ(Y) + 1. As the Picard number is
always positive, a minimal model in the classical sense can be obtained by
taking contractions finitely many times. □

Minimal projective algebraic surfaces in the classical sense are classified
into the following three types:

(1) A surface with KX nef.
(2) A P1-bundle over a curve.
(3) P2.

In this book, (1) is called a minimal model, and (2) or (3) is called a Mori
fiber space. In case (1), the minimal model is unique, so it is the minimum
one. On the other hand, in cases (2) and (3), the minimal model (in the clas-
sical sense) is not unique, so such a model is sometimes said to be relatively
minimal, but to avoid confusion we will not use this terminology.

Combining the existence of resolution of singularities and Castelnuovo’s
contraction theorem, we get the minimal resolution of singularities of a nor-
mal algebraic surface. It is a minimal model in the relative setting, which is
obtained by considering ρ(Y/X) instead of ρ(X):

Corollary 1.13.6 ([44, Theorem V.5.8]) Let X be a normal algebraic surface.
Then among all birational projective morphisms g : Y → X from smooth
algebraic surfaces, there exists a unique minimal one in the classical sense.

We also have the following minimal log resolution of singularities which is
the log version of the minimal resolution of singularities:

Proposition 1.13.7 Let (X, B) be a pair consisting of a normal algebraic
surface and a reduced divisor. Then among all birational projective morphisms
g : Y → X from smooth algebraic surfaces such that the sum of f −1

∗ B and
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the exceptional divisor E is a normal crossing divisor, there exists a unique
minimal one in the classical sense.

For a projective algebraic curve C on a smooth algebraic surface X, the
following genus formula holds ([44, Example V.3.9.2]):

(KX ·C) + (C2) = 2ḡ − 2 ≥ −2.

Here ḡ is called the virtual genus of C, which is a nonnegative integer. Take g
to be the genus of the smooth projective curve Cν obtained from taking the nor-
malization of C, then ḡ ≥ g. The difference ḡ − g comes from the singularities
of C. In particular, the equality holds if and only if C is smooth.

Minimal resolution of singularities is characterized by relative nefness of
the canonical divisor. This coincides with the definition of minimality in this
book:

Proposition 1.13.8 (1) A birational projective morphism f : Y → X from
a smooth algebraic surface to a normal algebraic surface is the minimal
resolution of singularities if and only if KY is relatively nef.

(2) Let f : Y → X be the minimal resolution of singularities of a normal
algebraic surface. If we write f ∗KX = KY +C, then C is effective.

Proof (1) If there is a (−1)-curve C such that f (C) is a point, then (KY ·C) =
−1 and KY is not relatively nef.

Conversely, if KY is not relatively nef, then there is a curve C such that (KY ·

C) < 0 and f (C) is a point. By the Hodge index theorem (Corollary 1.13.2),
(C2) < 0. On the other hand, by the genus formula, (KY ·C)+(C2) ≥ −2. Hence
we have ((KY + C) · C) = −2, and hence C � P1 and (C2) = −1. So C is a
(−1)-curve.

(2) Write C = C+ − C−, where C+ and C− are effective divisors with no
common irreducible component. If C− , 0, then (KY ·C−) = −(C+ ·C−)+ (C− ·
C−) < 0, which contradicts the fact that KY is relatively nef. □

For the Euler characteristic χ(OX) =
∑

(−1)i dim Hi(X,OX) of a smooth pro-
jective algebraic surface X, we have Noether’s formula

χ(OX) =
1

12
((K2

X) + c2(X)).

Here c2(X) is the second Chern class of the tangent bundle of X, and −KX =

c1(X) is the first Chern class.
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1.13.3 The classification of algebraic surfaces

Let us consider the finite generation problem for canonical rings of smooth
projective algebraic surfaces. The important thing here is that canonical rings
are invariant under contractions of (−1)-curves: f ∗ : R(X′,KX′ ) � R(X,KX).
Therefore, in the following we consider X to be minimal.

In the classification of minimal models in the classical sense, for a Mori fiber
space in case (2) or (3), its canonical ring is just k, and the finite generation is
trivial. In the following we just consider case (1). The following content is a
deep result called the Kodaira–Enriques classification theory for algebraic sur-
faces. In addition, Kodaira also classified (not necessarily algebraic) compact
complex surfaces, but we will not discuss them here ([9]).

The Kodaira dimension κ(X) takes value among 0, 1, 2. When κ(X) = 0,
there exists a positive integer r such that rKX ∼ 0. If we take r to be the smallest
one with such property, then r is among 1, 2, 3, 4, 6. In particular, R(X,KX) �
k[tr].

When κ(X) = 1, there exists a surjective morphism f : X → Y to a smooth
projective algebraic curve such that the generic fiber is an elliptic curve. The
following Kodaira’s canonical bundle formula holds:

KX ∼Q f ∗(KY + B).

Moreover, deg(KY + B) > 0. Here B is a Q-divisor on Y determined by types
of singular fibers of f and ∼Q means Q-linearly equivalent. Singular fibers are
completely classified and the corresponding coefficients of B are determined.
Here the coefficients of B are not necessarily contained in the open interval
(0, 1). This is because it also includes a part induced from the J-function J :
Y → P1 coming from the fibers of f . Anyway, there exists a positive integer r
such that rKX ∼ f ∗(r(KY + B)) and R(X, rKX) � R(Y, r(KY + B)). The latter is
finitely generated as r(KY +B) is an ample divisor, which implies that R(X,KX)
is finitely generated.

Consider the case κ(X) = 2. A minimal model X is of general type if and only
if the self-intersection number of the canonical divisor is positive (K2

X) > 0.
For m ≥ 2, by a vanishing theorem of Kodaira type, we have the following
plurigenus formula:

dim H0(X,mKX) =
1
2

m(m − 1)(K2
X) + χ(OX).

We discuss the canonical models. A curve C on X is called a (−2)-curve
if C � P1 and (C2) = −2. On a minimal surface of general type, a (−2)-
curve is characterized by the condition (KX · C) = 0. This is because, on one
hand, (C2) < 0 by the Hodge index theorem (Corollary 1.13.2) and on the
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other hand, (KX · C) + (C2) ≥ −2 by the genus formula. According to Artin’s
contraction theorem ([7] or Theorem 1.13.10), we can contract all (−2)-curves
by a birational morphism; there exists a birational morphism g : X → Y to a
normal algebraic surface such that the exceptional set of g coincides with the
union of all (−2)-curves. Y is called the canonical model.

The canonical divisor KY of Y is a Cartier divisor and KX = g∗KY . Therefore,
there is an isomorphism g∗ : R(Y,KY ) � R(X,KX). Since KY is ample, the
canonical ring R(X,KX) is finitely generated and Y = Proj R(X,KX). This is the
proof of the finite generation of canonical rings in dimension 2 by Mumford
([106]). More precisely, on the canonical model, |5KY | is very ample ([17]).

1.13.4 Rational singularities

For a minimal model X of general type, its canonical model Y has canon-
ical singularities, because the birational morphism g : X → Y is crepant
(KX = f ∗KY ). Canonical singularities in dimension 2 is known to be the same
as rational double points, that is, rational singularities of multiplicity 2. Such
singularities were investigated in many different situations historically. They
are also called Du Val singularities, Klein singularities, simple singularities,
or ADE singularities. Here we summarize the classification of 2-dimensional
canonical singularities:

Theorem 1.13.9 Let P ∈ X be a canonical singularity in dimension 2.

(1) Take f : Y → X to be the minimal resolution of singularity, then the excep-
tional set Exc( f ) is a normal crossing divisor whose irreducible compo-
nents are all (−2)-curves and the dual graph defined by their intersections
is among the Dynkin diagrams of type An,Dn, E6, E7, E8 (see Figure 1.2).

Conversely, on a smooth algebraic surface, a normal crossing divisor
whose irreducible components are all (−2)-curves with dual graph of type
An,Dn, E6, E7, E8 can be contracted to a canonical singularity by a bira-
tional projective morphism.

(2) When the base field is C, there exists an analytic neighborhood of P iso-
morphic to the neighborhood of the origin of the hypersurface in C3 de-
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An

Dn

E6

E7

E8

Figure 1.2 Dynkin diagrams.

fined by one of the following equations:

An : x2 + y2 + zn+1 = 0, n ≥ 1;

Dn : x2 + y2z + zn−1 = 0, n ≥ 4;

E6 : x2 + y3 + z4 = 0;

E7 : x2 + y3 + yz3 = 0;

E8 : x2 + y3 + z5 = 0.

Here (x, y, z) are coordinates of C3.
(3) When the base field is C, it is analytically isomorphic to the singularity of

the image of the origin of the quotient space C2/G by a finite subgroup G
of SL(2,C).

More generally, rational singularities on algebraic surfaces are defined by
Artin ([8]). Please refer to the original paper for the proof. The theorem is
characteristic free:

Theorem 1.13.10 Let X be a smooth algebraic surface and let Ei (i = 1, . . . , r)
be projective curves on X such that the union E =

⋃
Ei is connected. Assume

that the matrix of intersections [(Ei ·E j)] is negative definite. Then the following
assertions hold:

(1) There exists a smallest effective integral divisor F =
∑

eiEi , 0 satisfying
the property that (F · Ei) ≤ 0 for all i. It is called the fundamental cycle.

(2) The inequality (KX · F) + (F2) ≥ −2 holds.
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(3) If the equality (KX · F) + (F2) = −2 holds, then there exists a birational
projective morphism f : X → Y to a normal algebraic surface and the
exceptional set Exc( f ) coincides with E. In this case, the singularity of Y
is called a rational singularity.

(4) Rational singularities are Q-factorial. Moreover, R1 f∗OX = 0. Conversely,
a normal singularity on an algebraic surface Y with a resolution of singu-
larity f : X → Y satisfying R1 f∗OX = 0 is a rational singularity.

The condition R1 f∗OX = 0 is independent of the choice of resolutions of
singularities since for g : X′ → X a blowup of a smooth algebraic surface at a
point, R1g∗OX′ = 0 and g∗OX′ � OX hold.

Example 1.13.11 (1) On a smooth algebraic surface, a curve satisfying C �
P1 and (C2) < 0 can be contracted to a rational singularity.

(2) Dual graphs obtained by taking resolutions of singularities of 2-dimensional
DLT pairs (see Figure 1.3) can be contracted to rational singularities.

Proposition 1.13.12 Let X be a normal algebraic surface with at most ra-
tional singularities and let f : Y → X be a resolution of singularities. Then
prime divisors in the exceptional set of f are all isomorphic to P1 and the dual
graph is a tree. Here a tree is a graph with all edges having weight one and
with no cycles.

Proof Since R1 f∗OY = 0, limE H1(E,OE) = 0 by [44, Theorem III.11.1].
Here the limit is the inverse limit for all subschemes E supported on the excep-
tional set of f . Since the exceptional set of f is 1-dimensional, for any effective
divisor E supported in Exc( f ), we have H1(E,OE) = 0. This concludes the
proof. □

Remark 1.13.13 According to a theorem of Grauert ([33]), for a smooth
complex analytic surface X and projective curves Ei (i = 1, . . . , r) on X such
that the union E =

⋃
Ei is connected and the matrix of intersections [(Ei ·

E j)] is negative definite, there always exists a proper birational morphism f :
X → Y to a normal complex analytic surface such that the exceptional set of f
coincides with E. However, Y does not necessarily admit an algebraic structure
and f is not necessarily algebraic.
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Figure 1.3 2-dimensional DLT.

1.13.5 The classification of DLT surface singularities I

Numerical geometry becomes easy for normal algebraic surfaces. Even for
R-divisors which are not R-Cartier, intersection numbers and pullback by a
morphism can be well defined.

Let X be a normal algebraic surface and let D be an R-divisor on X. Take
a resolution of singularities f : Y → X and denote by Ei (i = 1, . . . , r) the
exceptional divisors. Mumford’s numerical pullback f ∗D = f −1

∗ D +
∑

eiEi

is defined as the following ([108]): The coefficients ei are the solution of the
equations ( f ∗D·Ei) = 0 for all i, which are uniquely determined since [(Ei ·E j)]
is negative definite. If moreover D is effective, we can see that f ∗D is again
effective.

For two R-divisors D and D′, their intersection number can be defined by
(D · D′) = ( f ∗D · f ∗D′).
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From now on, we work on the classification of 2-dimensional DLT pairs.
Here in all discussions, we assume that the base field is of characteristic 0.
There is also a classification in positive characteristics ([52]).

As the definition of pullback extends to all R-divisors, for a pair (X, B), we
can define the concept such as KLT and DLT without assuming that KX + B is
R-Cartier. Therefore, in the following, this assumption is removed. However,
as will be shown later in this section, it turns out that KX + B automatically
becomes R-Cartier.

First, we generalize the vanishing theorem slightly. For algebraic surfaces,
the normal crossing condition which is important in Theorem 1.9.7 can be
removed:

Proposition 1.13.14 Let X be a smooth projective algebraic surface defined
over an algebraically closed field of characteristic 0, let f : X → S be a
projective morphism to another algebraic variety, and let D be a relatively nef
and relatively big R-divisor on X. Then R1 f∗(OX(KX + ⌜D⌝)) = 0.

Proof Take a log resolution g : Y → X of (X,D). By Theorem 1.9.7, R1( f ◦
g)∗(OY (KY + ⌜g∗D⌝)) = R1g∗(OY (KY + ⌜g∗D⌝)) = 0. Then, arguing by spectral
sequence, we get R1 f∗(g∗(OY (KY + ⌜g∗D⌝))) = 0. In the exact sequence

0→ g∗(OY (KY + ⌜g∗D⌝))→ OX(KX + ⌜D⌝)→ Q→ 0,

the cokernal Q of the natural homomorphism has 0-dimensional support, hence
it does not have higher cohomologies. Therefore, the proof is completed. □

DLT pairs have rational singularities:

Proposition 1.13.15 Let (X, B) be a 2-dimensional DLT pair defined over an
algebraically closed field of characteristic 0. Then X has rational singularities.
If (X, B) is only LC, then X has rational singularities at points in the support
of B.

Proof Since (X, B) is DLT, (X, 0) is again DLT. Here note that the condition
KX + B being R-Cartier is removed in the definition of DLT. As (X, 0) has no
boundary, it is KLT. Take the minimal resolution of singularities f : Y → X
and write f ∗KX = KY +C. As it is the minimal resolution, C is effective. Since
(X, 0) is KLT, ⌜−C⌝ = 0. Applying Proposition 1.13.14 to D = − f ∗KX , we get
R1 f∗OY = R1 f∗(OY (⌜−C⌝)) = 0.

For the latter assertion, when the pair (X, B) is LC, (X, 0) is KLT at points in
the support of B. □

Rationality of singularities implies Q-factoriality:
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Proposition 1.13.16 Algebraic surfaces defined over the complex number
field with only rational singularities are Q-factorial.

Proof Take a resolution of singularities f : Y → X. Consider Y as a complex
analytic variety, consider its sheaves in the classical topology instead of the
Zariski topology. Then there exists an exponential exact sequence

0→ ZY → OY → O
∗
Y → 0.

Here the map OY → O
∗
Y is defined by the exponential function z 7→ e2πiz. Note

that such kind of exact sequence does not exist in the Zariski topology.
By assumption, R1 f∗OY = 0, hence the map R1 f∗O∗Y → R2 f∗ZY is injective.
For any divisor D on X, its numerical pullback f ∗D is a Q-divisor, so we

can take a positive integer m such that m f ∗D is integral. Note that OY (m f ∗D)
determines an element in R1 f∗O∗Y whose image in R2 f∗QY is 0 since (m f ∗D ·
E) = 0 for every f -exceptional curve E. Therefore, there exists a positive
integer m′ such that the image of OY (mm′ f ∗D) in R2 f∗ZY is 0. This induces an
isomorphism

OY (mm′ f ∗D) � OY .

The global section of the left-hand side corresponding to 1 of the right-hand
side determines a rational function h on Y such that div(h)Y = −mm′ f ∗D.
Hence div(h)X = −mm′D which means that mm′D is Cartier. □

As 2-dimensional DLT pairs are rational singularities, they are Q-factorial,
and hence numerical pullback is actually the same as pullback. For an LC pair,
the same holds true on the support of the boundary.

Next, we show that the KLT or LC property is preserved under covering:

Lemma 1.13.17 Let f : Y → X be a finite surjective morphism étale in codi-
mension 1 between normal algebraic varieties defined over an algebraically
closed field of characteristic 0.

Let B be an effective R-divisor on X such that KX +B is R-Cartier and write
f ∗(KX + B) = KY + C. Then the pair (X, B) is LC if and only if the pair (Y,C)
is LC. The same holds true for KLT pairs.

Proof As f is étale in codimension 1, C is effective. Take a log resolution
g : X′ → X of (X, B) and take Y ′ to be the normalization of X′ in the function
field k(Y). Denote the induced morphisms by h : Y ′ → Y and f ′ : Y ′ → X′.
Write g∗(KX + B) = KX′ + B′ and h∗(KY +C) = KY ′ +C′.

First, we show that (X, B) is LC assuming that (Y,C) is LC. Take an arbitrary
prime divisor D contracted by g and denote its coefficient in B′ by d. Take a
prime divisor E on Y ′ such that f ′(E) = D and denote the ramification index of
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E with respect to f ′ by r. Then the coefficient of E in ( f ′)∗D and KY ′−( f ′)∗KX′

are r and r − 1, respectively. Therefore, take e to be the coefficient of E in C′,
we get the relation

dr = r − 1 + e.

Since e ≤ 1 by assumption, we get d ≤ 1. Moreover, if e < 1, then d < 1.
Conversely, we show that (Y,C) is LC assuming that (X, B) is LC. By us-

ing the result we just proved in the first part, we may replace Y by taking the
Galois closure and assume that the field extension k(Y)/k(X) is Galois from
the beginning. As the Galois group G acts on Y , we now take h : Y ′ → Y
to be a G-equivariant log resolution. For example, a canonical resolution (Re-
mark 1.6.2(4)) is automatically G-equivariant. The quotient space X′ = Y ′/G
has quotient singularities. Denote by g : X′ → X and f ′ : Y ′ → X′ the in-
duced morphisms. Take a prime divisor E contracted by h and define D, e, d
in the same way as the first part. Although X′ is not smooth, we still have
dr = r − 1 + e. Since d ≤ 1 by assumption, we get e ≤ 1. Moreover, if d < 1,
then e < 1. □

Remark 1.13.18 Here we give some remarks about the topology of algebraic
varieties defined over the complex number field. In general the topology of al-
gebraic varieties is the Zariski topology, but when the base field is the complex
number field, the classical Euclidean topology is also useful. For example, the
exponential exact sequence that appeared in Proposition 1.13.16 makes sense
only in the latter topology.

As an open subset in the Zariski topology is large, it admits nontrivial struc-
ture itself, on the other hand, classical topology has polydisks as a base and its
local structure is trivial. Since there are many open subsets, even the constant
sheaf has nontrivial cohomology groups.

For algebraic varieties defined over the complex number field, many defini-
tions and results hold both for the Zariski topology and the classical topology.
Furthermore, in many cases they can be generalized to nonalgebraic complex
analytic varieties. For example, the definitions of DLT pairs and LC pairs can
be generalized using resolutions of complex analytic singularities. The same is
true for DLT pairs having rational singularities. The fact that LC and KLT are
preserved by étale in codimension 1 coverings can be also generalized since it
is a consequence of the ramification formula.

The construction of index 1 covers can be also generalized. For example,
for an effective divisor D on a complex analytic variety X such that there is an
isomorphism OX(rD) � OX , take a regular function h such that div(h) = rD,
take the normalization of the subvariety defined by the equation zr = h in
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the trivial line bundle X × C over X, we get the index 1 cover. Here z is the
coordinate in the fiber direction. When D is not effective, we can consider a
similar construction in X × P1.

However, as stated in Remark 1.1.2, we should take care of the concept of
normal crossing divisor. We should also take care of Q-factoriality. A complex
analytic variety X is analytically Q-factorial if for any analytic neighborhood
U of any point P ∈ X and any codimension 1 subvariety D defined on U, there
exists a neighborhood U′ of P in U, a positive integer r, and a regular function
h on U′ such that divU′ (h) = r(D ∩ U′). As the algebraic Q-factoriality is
a condition for globally defined prime divisors, analytical Q-factoriality is a
stronger condition.

1.13.6 The classification of DLT surface singularities II

We describe the classification of DLT pairs for algebraic surfaces. The results
are established in a sufficiently small analytic neighborhood near the singular-
ity.

First, consider the structure near points in the support of the boundary:

Theorem 1.13.19 ([61]) Let X be an algebraic surface defined over the com-
plex number field and let B be a reduced divisor on X. Assume that (X, B) is
DLT. Then for any point P ∈ X in the support of B, there exists an analytic
neighborhood U such that one of the following assertions holds:

(1) U is smooth and B|U is a normal crossing divisor in complex analytic
sense.

(2) U has a cyclic quotient singularity of type 1
r (1, s) and B|U is irreducible.

Here r, s are coprime positive integers. In more detail, there exists a neigh-
borhood U0 of the origin of the affine space C2 with coordinates x, y, a
group action by G = Z/(r) as x 7→ ζx, y 7→ ζ sy such that the pair (U, B|U)
is analytically isomorphic to (U0/G, B0/G). Here ζ is a primitive rth root
of 1 and B0 = div(x). In this case, (U, B|U) is PLT.

Conversely, pairs satisfying (1) or (2) are DLT.

Proof Take a sufficiently small analytic neighborhood U of P, take an ana-
lytic irreducible component B1 of B∩U. We may assume that B1 remains irre-
ducible when replacing U by smaller neighborhoods. Here note that it is pos-
sible that an (algebraic) irreducible component of B containing B1 and passing
P is strictly bigger than B1 when restricting to U.

Since X has rational singularities, it is analytically Q-factorial. Hence the
divisor B1 on U is Q-Cartier. Take r1 to be the smallest positive integer such
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that r1B1 is Cartier. Then we may assume that OU(r1B1) � OU . Take π1 : Y1 →

U to be the index 1 cover. As π1 is étale in codimension 1, by Lemma 1.13.17,
(Y1, π

∗
1B) is LC.

If one of the analytic irreducible components of π∗1B is not Cartier, note
that Y1 has again rational singularities, we can construct an index 1 cover π2 :
Y2 → Y1 again. Therefore, we can construct a finite cover π : Y → U étale in
codimension 1 such that any analytically irreducible component of C = π∗B is
Cartier. By construction, Q = π−1(P) is one point.

We will show that Y is smooth. Suppose not, take the minimal resolution of
singularities g : Z → Y . Take C j to be an analytically irreducible component
of C, as C j is Cartier, g∗C j is an integral divisor. Note that the support of g∗C j

contains the exceptional set of g.
Take s to be the number of such C j. If s ≥ 2, then any exceptional divisor of

g has coefficients at least 1 in g∗C1 and g∗C2. Since KZ ≤ g∗KY , this contradicts
the fact that (Y,C) is LC.

Now s = 1. Take E1, . . . , Er to be the exceptional divisors of g. Since Y
has rational singularities, the dual graph of the exceptional divisors of g is a
tree. Since (Y,C) is LC, we get g∗C1 = g−1

∗ C1 +
∑

Ei and KZ = g∗KY . Since
C1 is analytically irreducible, set-theoretically g−1

∗ C1 intersects the support of∑
Ei at one point. If the graph of g−1

∗ C1 +
∑

Ei is not a tree, then we need
more blowups to get a log resolution of (Y,C), but this procedure will produce
an exceptional divisor with log discrepancy coefficient at least 2, which is a
contradiction.

On the other hand, if the graph of g−1
∗ C1 +

∑
Ei is a tree, then there exists an

irreducible component E1 intersecting g−1
∗ C1 +

∑
i,1 Ei at just one point. But

by (KZ · E1) = 0 we get (E2
1) = −2, which contradicts (g∗C1 · E1) = 0.

In summary, we showed that Y is smooth. By a similar argument, we can
show that C is normal crossing. Note that Y \ Q is connected and simply
connected, so it coincides with the universal covering of U \ P. In particular,
π : Y → U is a Galois covering. Take G to be the Galois group.

Embed Y into the affine space C2 with coordinates x, y such that Q is the
origin. Since (Y,C) is LC and Q is contained in the support of C, we may
assume that the equation of C is xy = 0 or x = 0. By construction, C is
invariant under the action of G.

If the equation of C is x = 0, then B ∩ U is analytically irreducible, and
hence G is the Galois group of an index 1 cover which is isomorphic to Z/(r1).
We get into case (2) by diagonalizing the generator of G. Here if r, s are not
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coprime, then there is a nontrivial subgroup of G with fixed locus outside Q,
which contradicts the fact that π : Y → U is étale in codimension 1.

Consider the case that the equation of C is xy = 0. First, consider the case
that every irreducible component of C is invariant under the action of G. By
choosing coordinates properly, the log canonical form dx/x∧ dy/y is invariant
under the action of G, and determines a log canonical form θ ∈ H0(U,KU + B)
on the quotient space Y/G � U. Since θ has no zeros, KU + B is Cartier on U.
Suppose that U is not smooth, take h : V → U to be the minimal resolution
of singularities and write h∗(KU + B) = KV + BV , then the coefficients of
BV are integers. Since h∗KU ≥ KV , the coefficients of BV are at least 1. This
contradicts the fact that (X, B) is DLT. Hence U is smooth and we get into case
(1).

Next, suppose that there exists an element in G exchanging irreducible com-
ponents of C. Then B ∩ U is again analytically irreducible. Hence the DLT
pair (U, B) is PLT. Take G′ to be the subgroup of G consisting of all elements
preserving irreducible components of C, then G1 = G/G′ � Z/(2) and the
log canonical divisor KY ′ + C′ on Y ′ = Y/G′ is Cartier. Here C′ is the im-
age of C, which is a reduced divisor with two irreducible components. If Y ′

is not smooth, take g′ : Z′ → Y ′ to be the minimal resolution of singularities
and write (g′)∗(KY ′ + C′) = KZ′ + C′Z , then the coefficients of C′Z all equal to
1. The action of G1 on Y ′ extends to Z′ and induces a birational morphism
h : V = Z′/G1 → U = Y ′/G1. This is not necessarily the minimal resolution
of singularities, but if write h∗(KU + B) = KV + BV , then by the ramification
formula, the coefficients of BV all equal to 1, which contradicts that (U, B) is
PLT. Therefore, Y ′ is smooth. Then G′ = {1} and the action of G1 exchanging
irreducible components of C is étale in codimension 1, which is absurd. □

As an application in arbitrary dimension, we can show the subadjunction
formula for DLT pairs (see Theorem 1.11.13):

Corollary 1.13.20 Let (X, B) be a DLT pair and let Z be an irreducible com-
ponent of ⌞B⌟. Define the R-divisor BZ on Z by (KX + B)|Z = KZ + BZ . Take an
irreducible component P of BZ with coefficient p. Denote by bi the coefficients
of irreducible components of B containing P. Then there exist positive integers
mi, r such that

p =
r − 1 +

∑
bimi

r
.

Proof As we can check the coefficient of P on its generic point, we may
assume that dim X = 2 and P is a point. The coefficient remains the same
when X is considered as a complex analytic variety, hence we just need to
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consider two cases in Theorem 1.13.19 applied to (X, ⌞B⌟). Case (1) is trivial,
we only consider case (2).

Let Y = C2, W = div(x), G = Z/(r), X = Y/G, and Z = W/G. Denote the
projection by π : Y → X. Take the origin Q ∈ Y and denote P = π(Q). In the
DLT pair (X, B), B = Z +

∑
biBi. Take Ci = π

∗Bi and mi = (Ci · W)Q which
are local intersection numbers at Q. When Bi passes through P, mi is a positive
integer.

Since the covering π : Y → X is étale outside the origin, π∗(KX + Z) =
KY + W. On the other hand, π|W : W → Z is ramified over Q with index r,
hence π∗P = rQ, KW = (π|W )∗KZ + (r − 1)Q. On the smooth variety Y we have
the usual adjunction formula (KY+W)|W = KW . Then the assertion follows. □

Next, we consider points outside the boundary:

Theorem 1.13.21 ([61]) Let X be an algebraic surface defined over the com-
plex number field. Assume that the pair (X, 0) is DLT. Then any point P ∈ X
is a quotient singularity. That is, there exists an analytic neighborhood U of
P which is analytically isomorphic to the quotient of a neighborhood of the
origin (0, 0) of C2 by the linear action of a finite subgroup G of the general
linear group GL(2,C).

Conversely, if X has quotient singularities, then (X, 0) is DLT.

Proof Since B = 0, (U, 0) is KLT. First, take the index 1 cover π1 : Y1 → U of
KX . Since (Y1, 0) is also KLT and KY1 is Cartier, Y1 has canonical singularities.
Therefore, Y1 = U0/G1, where U0 is a neighborhood of the origin of C2 and G1

is a finite subgroup of SL(2,C). Now U0 \ {0} is the universal cover of U \ {P}
and we get the conclusion.

The converse statement follows from the ramification formula and holds for
any dimension (Proposition 1.10.6). □

Birational geometry of algebraic surfaces works for arbitrary characteristics.
The classification theorem of minimal models works under certain modifica-
tion ([110, 19, 18]). The theory of rational singularities remains true, also the
contraction theorem remains true ([7, 8]). The dual graph of the resolution of
singularities of a DLT pair is completely classified, which is the same as in
characteristic 0 ([52], Figure 1.3). However, in characteristic 0 the singularity
can be determined by the dual graph of the resolution of singularity, which
turns out to be a quotient singularity, but on the other hand, in positive char-
acteristics it is only known to be a rational singularity and the structure of the
singularity is not determined only by the dual graph of the resolution of singu-
larity, the classification seems to be more complicated. In addition, [52] is the
origin where the author was involved in the minimal model theory.



80 CHAPTER 1. ALGEBRAIC VARIETIES WITH BOUNDARIES

1.13.7 The Zariski decomposition

Finally, we state the Zariski decomposition theorem for divisors on algebraic
surfaces:

Theorem 1.13.22 Let D be an integral divisor on a smooth projective surface
X. Assume that there exists a positive integer m such that |mD| , ∅. Then there
exists an effective Q-divisor N satisfying the following conditions:

(1) P = D − N is nef.
(2) (P ·Ei) = 0 for every i, where E1, . . . , Em are irreducible components of N.
(3) The matrix [(Ei · E j)] is negative definite.

Moreover, N is uniquely determined by the above conditions.

Such a decomposition D = P + N is called the Zariski decomposition of D
([144]).

Proposition 1.13.23 Let X be a smooth projective surface and let f : X → Y
be a morphism to a minimal model in the classical sense. Assume that KY is
nef. Set N = KX − f ∗KY , then KX = f ∗KY + N is the Zariski decomposition.

That is, we can say that the Zariski decomposition indeed gives the mini-
mal model without taking a birational model. This is the reason why Zariski
decomposition has drawn a lot of attention.

Example 1.13.24 We give an example of a log minimal model in dimen-
sion 2. The correspondence between Zariski decompositions and log minimal
models holds in general ([52]).

Consider an irreducible curve B of degree 4 with three ordinary cusp sin-
gularities on the projective plane X = P2. Here an ordinary cusp singularity
is a singularity analytically equivalent to the singularity given by the equation
x2 − y3 = 0 at the origin. By the genus formula, B is a rational curve, that
is, its normalization is isomorphic to P1. Let f : Y → X be the minimal log
resolution of the pair (X, B) and let C0 = f −1

∗ B be the strict transform. Let Pi

(i = 1, 2, 3) be the three singular points on B. Over each point there are three
exceptional divisors Ei j (i, j = 1, 2, 3) on Y . It is easy to calculate the intersec-
tion numbers (C2

0) = −2 and (E2
i j) = − j. C = C0 +

∑
i, j Ei j is a normal crossing

divisor with all irreducible components isomorphic to P1. The dual graph is
shown in Figure 1.4.

The Zariski decomposition KY +C = P + N is given by

P = KY +C0 +
∑

i

(
Ei1 +

1
2

Ei2 +
2
3

Ei3

)
, N =

∑
i

(
1
2

Ei2 +
1
3

Ei3

)
.
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Figure 1.4 Dual graph of the resolution of singularities.

Here P is nef and big with (P2) = 1/2.
Denote by g : Y → Z the contraction of six curves Ei2, Ei3 (i = 1, 2, 3) in the

support of N and D = g∗C. Then KZ+D is ample and P = g∗(KZ+D). The pair
(Z,D) is a minimal model of the DLT pair (Y,C) which is also the canonical
model.

In Chapter 2, we will generalize the definition of Zariski decomposition in a
weak sense for pseudo-effective R-divisors in any dimension, which is called
the “divisorial Zariski decomposition”.

1.14 The 3-dimensional case

Let us consider the 3-dimensional case. In this situation, results in higher di-
mensional algebraic geometry discussed in subsequent chapters are necessary.
Indeed, higher dimensional algebraic geometry starts from dimension 3. How-
ever, there are also special phenomena and results that only appear in dimen-
sion 3. We will describe them briefly as a comparison to results in dimensions
up to 2. The results in this section will not be used in subsequent sections.

The MMP, including the existence of flips, the termination of flips, and the
abundance conjecture which will be discussed in Chapter 2, is completely un-
derstood in dimension 3 even for the log version.
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As a consequence of the minimal model theory, the following theorem holds:

Theorem 1.14.1 Let X be a smooth projective 3-dimensional algebraic va-
riety over a field of characteristic 0. Then there exists a projective algebraic
variety X′ with at most Q-factorial terminal singularities and a birational map
f : X 99K X′ surjective in codimension 1 such that one of the following asser-
tions holds:

(1) X′ is a minimal model. That is, the canonical divisor KX′ is nef.
(2) X′ admits a Mori fiber space structure. That is, there exists a surjective

morphism g : X′ → Y to a normal algebraic variety Y with dim Y < dim X
and connected geometric fibers such that −KX is g-ample and ρ(X/Y) = 1.

Remark 1.14.2 (1) f is not necessarily a morphism and X′ is not necessarily
smooth, this is a feature in dimensions 3 and higher.

(2) X′ has terminal singularities means that the pair (X′, 0) with divisor 0 has
terminal singularities. The concept of terminal singularities was originally
defined by Reid in dimension 3 ([121]). This was the starting point of
higher dimensional minimal model theory. However, log terminal singu-
larities for algebraic surfaces already appeared before this ([52]). In di-
mension 2, terminal singularities are impossible to be aware of since they
are automatically smooth.

(3) Any terminal singularity can appear in some minimal model. Terminal
singularities in dimension 3 are isolated singularities and are completely
classified (Theorem 1.14.5). For example, for two coprime positive inte-
gers r, b with b < r, a cyclic quotient singularity of type 1

r (1,−1, b) is
a terminal singularity (see Example 1.10.5 for the notation). The Cartier
index of a singularity P ∈ X is the minimal positive integer m such that
mKX is Cartier in a neighborhood of P. For example, the Cartier index of
a cyclic quotient singularity of type 1

r (1,−1, b) is r. In particular, there are
minimal models with arbitrarily large Cartier indices.

(4) The existence of flips in dimension 3 was proved by Mori via an almost
complete classification of small contractions ([102]). As will be discussed
in Chapter 3, the existence of flips in arbitrary dimension is proved in a
completely different way by induction on dimensions, where the general-
ization to the log version is essential.

(5) The termination of flips in dimension 3 was proved by Shokurov ([127]).
The termination of log flips in dimension 3 was proved in [65]. The termi-
nation of flips remains open in arbitrary dimension.

The abundance theorem holds in dimension 3 ([95, 97, 96, 63]):
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Theorem 1.14.3 Let X be a 3-dimensional minimal model. That is, X is a
projective algebraic variety with terminal singularities and KX is nef. Then
there exists a positive integer m such that the pluricanonical system |mKX | is
free. Associated with this, there exists a surjective morphism f : X → Y to a
normal projective algebraic variety with connected geometric fibers such that
KX ∼Q f ∗H for an ample Q-divisor H on Y. By definition, dim Y = κ(X). In
particular, the canonical ring is finitely generated.

Remark 1.14.4 (1) The log version of the abundance conjecture in dimen-
sion 3 was also proved ([78]).

(2) As can be shown in Chapter 3, the finite generation of canonical rings is
much weaker that the abundance theorem.

Terminal singularities in dimension 3 are completely classified as complex
analytic singularities ([121, 101, 124]):

Theorem 1.14.5 Let X be a 3-dimensional algebraic variety defined over the
complex number field with terminal singularities and take P ∈ X to be a singu-
lar point. Then (X, P) is an isolated singularity. Take r to be the Cartier index,
then there exists an analytic neighborhood of P isomorphic to the neighbor-
hood of the image of the origin of one of the following singularities:

(1) A cyclic quotient singularity of type 1
r (a,−a, 1). Here r, a are coprime pos-

itive integers (see Example 1.10.5 for the notation).

(2) General type: The quotient space of the hypersurface in C4 defined by the
equation xy + f (zr,w) = 0 at the origin by the cyclic group Z/(r). In other
words, the prime divisor in a 4-dimensional quotient singularity defined
by

{(x, y, z,w) ∈
1
r

(a,−a, 1, 0) | xy + f (zr,w) = 0}.

Here r, a are coprime positive integers and f has no constant term and w
term.

The following (3), (4) are also prime divisors in 4-dimensional quotient
singularities.
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(3) Special type:

{(x, y, z,w) ∈
1
2

(1, 0, 1, 1) | x2 + y2 + f (z,w) = 0}, f ∈ m4, r = 2;

{(x, y, z,w) ∈
1
2

(1, 0, 1, 1) | x2 + f (y, z,w) = 0},

f ∈ m3 \m4, f3 , y3, r = 2;

{(x, y, z,w) ∈
1
3

(0, 1, 2, 2) | x2 + f (y, z,w) = 0},

f ∈ m3, f3 = y3 + z3 + w3, y3 + zw2, or y3 + z3, r = 3;

{(x, y, z,w) ∈
1
2

(1, 0, 1, 1) | x2 + y3 + y f (z,w) + g(z,w) = 0},

f ∈ m4, g ∈ m4 \m5, r = 2.

Here m is the maximal ideal of the origin.
(4) Exceptional type:

{(x, y, z,w) ∈
1
4

(1, 3, 1, 2) | x2 + y2 + f (z2,w) = 0}, r = 4.

Here f has no constant term and w term.

The exceptional type is different since f is not invariant under the group
action.

Example 1.14.6 A terminal singularity appearing as the target of a divisorial
contraction from a smooth 3-dimensional algebraic variety is either smooth or
among one of the following cases:

(1) A cyclic quotient singularity of type 1
2 (1, 1, 1).

(2) The hypersurface defined by the equation xy + zw = 0 in C4.
(3) The hypersurface defined by the equation xy + z2 + w3 = 0 in C4.

In cases (2) and (3), KX is Cartier.
More complicated terminal singularities appear when taking divisorial con-

tractions from singular 3-dimensional algebraic varieties. Conversely, for the
equation of each singularity above, we can construct a divisorial contraction
f : Y → X explicitly by a weighted blowup of X (see [128, Appendix]).

Let X be a 3-dimensional minimal projective algebraic variety. When κ(X) =
3, we want to have a formula for plurigenera. Being of general type for X is
equivalent to that the self-intersection of the canonical divisor on a minimal
model is positive (K3

X) > 0 (Theorem 1.5.12). However, as KX is not necessar-
ily Cartier, (K3

X) is in general only a rational number.
By the finite generation of canonical rings, we can define the canonical
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model Y = Proj R(X,KX). There exists a birational morphism g : X → Y
such that KX = g∗KY which is the same as in dimension 2. Here this equal-
ity is in the following sense: For an integer m, mKX is Cartier if and only if
mKY is Cartier, moreover, in this case the equality mKX = g∗(mKY ) holds. In
particular, |mKX | is free if and only if |mKY | is free.

In order to state Reid’s plurigenus formula in [124], we introduce the con-
cept of baskets of singularities. Take {P1, . . . , Pt} to be the set of singular points
of X. Each singular point (X, Pi) is associated with a set of couples of integers
{ 1

ri j
(1,−1, bi j)} which is called the basket. Here ri j, bi j are coprime positive in-

tegers with bi j < ri j. For example, when (X, Pi) is a cyclic quotient singularity
of type 1

r (1,−1, b), its basket just consists of one couple { 1r (1,−1, b)}, which
coincides with the type of the quotient singularity. In general, a 3-dimensional
terminal singularity can be locally deformed into several cyclic quotient sin-
gularities, in which case its basket is the collection of types of those cyclic
quotient singularities. The Cartier index ri of (X, Pi) coincides with the least
common multiple of ri j in its basket. By considering baskets, terminal singu-
larities can be replaced by a set of virtual cyclic quotient singularities.

Reid’s plurigenus formula for m ≥ 2 is the following:

dim H0(X,mKX) =
1

12
m(m − 1)(2m − 1)(K3

X) + (1 − 2m)χ(OX)

+
∑
i, j

 r2
i j − 1

12ri j
(m − m̄) +

m̄−1∑
k=0

bi jk · (ri j − bi jk)
2ri j

 .
Here m denotes the residue of m modulo ri j ([124]). This formula is a sum
of a polynomial in m and a periodic correction term with respect to m (see
[144]). The correction term runs over the baskets of all singularities. As pluri-
genera are birational invariants, the left-hand side is the same as the starting
smooth model, but the right-hand side can be only computed on a minimal
model with singularities. In other words, when computing plurigenera on a
smooth model, the singularities of its minimal model appear, which is a sur-
prising phenomenon.

Also we have the following formula ([59]):

χ(OX) = −
1

24
(KX · c2(X)) +

∑
i, j

r2
i j − 1

24ri j
.

Here, since X has only isolated singularities, the intersection number (KX ·

c2(X)) can be defined properly.

Remark 1.14.7 In this book, we will show the finite generation of canonical
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rings. However, it is impossible to find a bound of the degrees of generators
depending only on the dimension. This can already be observed in dimension
3.

Let P be a singular point on a minimal model X. If m is not divisible by the
Cartier index r of P, then P is a basepoint of |mKX |. Hence for arbitrary large
m, we can construct examples such that |mKX | is not free.

For example, if dim X = 3 and P is a cyclic quotient singularity of type
1
r (a,−a, 1), then the canonical ring cannot be generated by elements of degree
less than r. This is a completely different phenomenon from that in dimensions
up to 2, because singularities appear in minimal models in dimensions 3 and
higher.



2
The minimal model program

The purpose of this chapter is to formulate the minimal model program (MMP).
The basepoint-free theorem and the cone theorem are two main pillars of the
MMP, which are known results at the time of [76]. We will also discuss sub-
sequent developments as an effective version of the basepoint-free theorem,
the MMP with scaling, the lengths of extremal rays, the divisorial Zariski de-
composition, and the Shokurov polytopes. The extension theorem obtained by
using multiplier ideal sheaves is an important result that lead to the newest
developments of the MMP discussed in Chapter 3.

Numerical geometry plays an important role in the minimal model theory.
But unlike Kleiman’s criterion, the basepoint-free theorem and the cone theo-
rem do not hold for arbitrary schemes. A feature of the minimal model theory
is that the canonical divisor plays a special role.

2.1 The basepoint-free theorem

The basepoint-free theorem is one of the two pillars supporting the minimal
model theory. It is an important consequence of the vanishing theorem of co-
homologies.

For algebraic surfaces, minimal models are obtained by applying Casteln-
uovo’s contraction theorem repeatedly. Contracting topological spaces is al-
ways possible. Also, as in Grauert’s theorem, contraction maps in complex ge-
ometry are known to exist by only assuming numerical conditions. However,
as in Artin’s theorem, contraction maps in algebraic geometry are more sub-
tle. In order to construct a contraction map in algebraic geometry, one needs
a basepoint-free linear system. By using the basepoint-free theorem, one can
construct a free linear system in a general setting.

87
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2.1.1 Proof of the basepoint-free theorem

Theorem 2.1.1 (Basepoint-free theorem) Let (X, B) be a KLT (Kawamata log
terminal) pair, let f : X → S be a projective morphism, and let D, E be Cartier
divisors on X. Assume the following conditions:

(1) D is relatively nef.
(2) There exists a positive integer m1 such that m1D+E−(KX+B) is relatively

nef and relatively big.
(3) E is effective and there exists a positive integer m2 such that for any posi-

tive integer m ≥ m2, the natural homomorphism f∗(OX(mD))→ f∗(OX(mD+
E)) is an isomorphism.

Then there exists a positive integer m3 such that for any integer m ≥ m3, mD is
relatively free. That is, the natural homomorphism f ∗ f∗(OX(mD)) → OX(mD)
is surjective.

Remark 2.1.2 For a given divisor, assuming that its numerical equivalence
class is in the closure of the ample cone, that is, assuming that it is nef, to show
that it is semi-ample is beyond the limit of Kleiman’s criterion. The basepoint-
free theorem can be generalized in many different directions, but it is not true if
one completely removes the condition on singularities and the condition about
canonical divisors. This reflects the complicated geometry of algebraic vari-
eties.

Proof Step 0. As the assertion is relative over S , we may assume that S is
affine. Then the assertion of the theorem says that the natural homomorphism
H0(X,mD) ⊗ OX → OX(mD) is surjective, in other words, the linear system
corresponding to H0(X,mD) has no basepoints. Note that when S is not a point,
H0(X,mD) may be infinite-dimensional.

Step 1. We may assume that m1D + E − (KX + B) is relatively ample and B
is a Q-divisor.

Indeed, by assumption (2), we can write m1D + E − (KX + B) = A + B′

for a relatively ample R-divisor A and an effective R-divisor B′ by Kodaira’s
lemma. Then for a real number ϵ with 0 < ϵ ≤ 1, m1D + E − (KX + B + ϵB′)
is relatively ample, and if ϵ is sufficiently small, (X, B+ ϵB′) is again KLT. We
can just replace B by B+ϵB′. As ampleness is an open condition, we can adjust
the coefficients of B to become rational numbers.

Step 2. Under the same assumption, we consider a weaker version of the
basepoint-free theorem, which is independently called the nonvanishing theo-
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rem. According to the historical order, we will give the proof of the nonvanish-
ing theorem later in this section and show the basepoint-free theorem assuming
the nonvanishing theorem in this step.

Theorem 2.1.3 (Nonvanishing theorem) Assume the same conditions as in
Theorem 2.1.1. Then there exists a positive integer m′3 such that for any integer
m ≥ m′3, f∗(OX(mD)) , 0.

Fix an integer m ≥ m′3, suppose that the linear system |mD| corresponding
to H0(X,mD) has a basepoint. Take a general divisor M ∈ |mD|. Take a log
resolution g : Y → X of (X, B + E + M) in strong sense, denote h = f ◦ g, and
write g∗(KX + B) = KY + C. We may take a decomposition g∗M = M1 + M2,
where |M1| is free and M2 is the fixed part of |g∗M|.

We can construct an effective Q-divisor C′ such that Exc(g)∪Supp(C+g∗E+
M2) = Supp(C′) and −C′ is g-ample. The construction of C′ is as follows: First
by the definition of log resolution in strong sense, we can take an effective Q-
divisor C′′ such that Exc(g) = Supp(C′′) and −C′′ is g-ample, then we can
perturb it to extend the support by the openness of ampleness.

We can take a sufficiently small positive rational number ϵ such that g∗(m1D+
E − (KX + B)) − ϵC′ is h-ample and ⌜−C − ϵC′⌝ = ⌜−C⌝ ≥ 0.

One key point of the proof is to consider the following threshold:

c = sup{t ∈ R | ⌞tM2 − g∗E +C + ϵC′⌟ ≤ 0}.

This is a kind of LC (log canonical) threshold. By definition, the maximal
coefficient of cM2 − g∗E +C + ϵC′ is exactly 1. By perturbing the coefficients
of C′ while preserving the ampleness of −C′, we may assume that there is
exactly one prime divisor attaining the maximal coefficient 1.

This idea of breaking the balance of coefficients by perturbing the coeffi-
cients of Q-divisors is called tiebreaking. This is the advantage of considering
Q-divisors and R-divisors instead of only integral divisors.

Denote by Z the prime divisor with coefficient 1 in cM2 − g∗E +C + ϵC′. As
the coefficients of C + ϵC′ are less than 1, Z is contained in the support of M2.
Hence g(Z) is contained in the base locus Bs |mD|. Write

cM2 − g∗E +C + ϵC′ = F + Z.

By construction, F does not contain the prime divisor Z and ⌜−F⌝ ≥ 0.
Let m′ be an integer, and as mg∗D ≡S M1+M2, we get the following equation

which plays the trick:

m′g∗D − F − Z − KY ≡S (m′ − cm)g∗D + cM1 + g∗E − (KY +C + ϵC′).

If m′ ≥ m1 + cm, as M1 is free, then the right-hand side is h-ample. Applying
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Theorem 1.9.3, we get

H1(Y,m′g∗D + ⌜−F⌝ − Z) = 0.

Therefore, the natural homomorphism

H0(Y,m′g∗D + ⌜−F⌝)→ H0(Z,m′g∗D|Z + ⌜−F⌝|Z)

is surjective. Here the restriction can be defined, since F does not contain the
prime divisor Z, and D can be replaced by a (not necessarily effective) linearly
equivalent divisor which does not contain the prime divisor Z.

On the other hand, as the negative coefficient part of F+g∗E comes from the
negative coefficient part of C, its support is contained in the exceptional set of
g. Therefore, the support of max{⌜−F⌝−g∗E, 0} is contained in the exceptional
set of g, and hence there are natural injective homomorphisms

H0(X,m′D)→ H0(X,m′D + ⌜−g∗F⌝)→ H0(X,m′D + E).

If m′ ≥ m2, then the terms on both ends coincide by assumption (3), hence
these three terms coincide. Therefore, H0(Y,m′g∗D) → H0(Y,m′g∗D + ⌜−F⌝)
is bijective.

Define the boundary BZ = (F + ⌜−F⌝)|Z on Z, then the pair (Z, BZ) is KLT.
Let us check that the projective morphism h|Z : Z → S and the Cartier divisors
g∗D|Z , ⌜−F⌝|Z on Z satisfy conditions of the theorem. Obviously, (1) holds,
and (2) also holds since m′g∗D|Z − F|Z − KZ is relatively ample. Consider the
following commutative diagram:

H0(Y,m′g∗D) −−−−−−→ H0(Y,m′g∗D + ⌜−F⌝)y y
H0(Z,m′g∗D|Z) −−−−−−→ H0(Z,m′g∗D|Z + ⌜−F⌝|Z).

If m′ ≥ m2, then the top horizontal arrow is bijective. Moreover, if m′ ≥ m1 +

cm, then the right vertical arrow is surjective. Hence the bottom horizontal
arrow is surjective and (3) holds.

By applying the nonvanishing theorem to Z, there exists a positive integer
m′′3 such that if m′ ≥ m′′3 , then H0(Z,m′g∗D|Z) , 0. Here we may assume that
m′′3 ≥ max{m2,m1 + cm}. By the above commutative diagram, this implies that
g(Z) is not contained in the base locus of |m′D|. If m′ is a multiple of m which
is fixed in the beginning of the theorem, then we have a strict inclusion of base
loci Bs |m′D| ⊊ Bs |mD|.

Fix a prime number p and take m,m′ to be powers of p. As there is no
strictly decreasing sequence of closed subsets in X, by repeating the above ar-
gument, for any sufficiently large power pt, Bs |ptD| = ∅. This argument is
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called Noetherian induction. For another prime number q, by the same argu-
ment, there exists a sufficiently large positive integer s such that Bs |qsD| = ∅.
As pt and qs are coprime, there exists a positive integer m3 such that for any
integer m ≥ m3 there exist positive integers a, b such that m = apt +bqs. In this
case, Bs |mD| = ∅. Therefore, assuming the nonvanishing theorem, we have
proved the basepoint-free theorem.

Step 3. We will show the nonvanishing theorem by induction on dim X. The
method is similar to the proof of the basepoint-free theorem, but we create
basepoints artificially.

It suffices to show the nonvanishing on the generic fiber of f , hence we may
assume that S = Spec k.

The statement of the nonvanishing theorem is that for all sufficiently large
m, H0(X,mD+E) , 0. By Theorem 1.10.8, for any integers p > 0 and m ≥ m1,
Hp(X,mD + E) = 0, and hence the equality dim H0(X,mD + E) = χ(X,mD +
E) holds. The latter is a polynomial in m, so it suffices to show that it is not
identically 0.

In general, proving the existence of global sections is a difficult problem.
In our situation we reduce the problem to a problem for the Euler–Poincaré
characteristic which is a topological quantity, and prove it as follows.

First, consider the case D ≡ 0. In this case, as E − (KX + B) is nef and big,
by Theorem 1.10.8, for any integers p > 0, Hp(X, E) = 0. Since E is effective,
χ(X, E) = dim H0(X, E) , 0 and the proof is finished.

Step 4. Finally we show the nonvanishing theorem in the case D . 0.
As in Step 1, we may assume that m1D + E − (KX + B) = A is an ample

Q-divisor. Take a positive integer a such that aA is a Cartier divisor.
Since D . 0, there exists a curve Γ such that (D · Γ) > 0. Denote by IΓ the

ideal sheaf of Γ, replacing a by a sufficiently large multiple, we may assume
that OX(aA) ⊗ IΓ is generated by global sections. Denote d = dim X, by taking
the intersection of zeros of d − 1 general sections of this sheaf, we get Ad−1 ≡

cΓ + Γ′. Here c > 0 and Γ′ is an effective linear sum of curves distinct from Γ.
Hence (D · Ad−1) > 0. We can take a sufficiently large integer m such that the
self-intersection number (mD + aA)d of the ample divisor mD + aA is larger
than ad(d + 1)d.

By the Serre vanishing theorem, there exists an integer k1 such that for all in-
tegers k ≥ k1 and p > 0, Hp(X, k(mD+aA)) = 0. Therefore, dim H0(X, k(mD+
aA)) = χ(X, k(mD + aA)) is a polynomial in k of degree d, and the coefficient
of the leading term is larger than ad(d + 1)d/d!.

Fix a smooth point P in X not contained in the support of E + B. Take mP
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the maximal ideal of OX,P, then length(OX,P/m
a(d+1)k
P ) is a polynomial in k of

degree d, and the coefficient of the leading term is ad(d+1)d/d!. Hence for any
sufficiently large k,

H0(X,OX(k(mD + aA)) ⊗ma(d+1)k
P ) , 0.

Therefore, there exists an element M ∈ |k(mD + aA)| such that multPM ≥

a(d + 1)k. This is called the concentration method.

From now on, the proof is the same as that of the basepoint-free theorem.
Take a log resolution g : Y → X of (X, B + E + M) in strong sense and write
g∗(KX + B) = KY + C. Note that here we can first take the blowup at P, then
construct g by further blowups after this blowup. We can take an effective Q-
divisor C′ such that Exc(g) ∪ Supp(g∗(B + E + M)) = Supp(C′) and −C′ is
g-ample. We can take a sufficiently small positive rational number ϵ such that
g∗(m1D + E − (KX + B)) − (d + 1)ϵC′ is ample and ⌜−C − ϵC′⌝ = ⌜−C⌝ ≥ 0.

Consider the threshold

c = sup{t ∈ R | ⌞tg∗M − g∗E +C + ϵC′⌟ ≤ 0}.

By perturbing the coefficients of C′, we may assume that there is exactly one
prime divisor Z attaining the maximal coefficient 1.

Take C0 to be the strict transform of the exceptional divisor of the first
blowup at P. Here C0 and Z may or may not coincide. The coefficient of C0 in
tg∗M − g∗E +C + ϵC′ is larger than a(d + 1)kt− (d − 1), hence c < d/a(d + 1)k
by definition. Write

cg∗M − g∗E +C + ϵC′ = F + Z.

By construction, F does not contain the prime divisor Z and ⌜−F⌝ ≥ 0.
Take an integer m′ such that m′ ≥ m1 + ckm, as 1 − ack > 1/(d + 1) > 0,

m′g∗D − F − Z − KY

≡(m′ − m1 − ckm)g∗D

+ (1 − ack)(m1g∗D + g∗E − (KY +C + ϵC′/(1 − ack)))

is ample. By Theorem 1.10.8,

H1(Y,m′g∗D + ⌜−F⌝ − Z) = 0,

hence the natural homomorphism

H0(Y,m′g∗D + ⌜−F⌝)→ H0(Z,m′g∗D|Z + ⌜−F⌝|Z)

is surjective. Also, for

H0(Y,m′g∗D)→ H0(Y,m′g∗D + ⌜−F⌝)→ H0(Y,m′g∗D + g∗E),
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the three terms coincide if m′ ≥ m2.
Denote BZ = (F + ⌜−F⌝)|Z , then the pair (Z, BZ) is KLT. The projective

morphism h|Z : Z → S and the Cartier divisors g∗D|Z , ⌜−F⌝|Z on Z satisfy
the conditions of the nonvanishing theorem. Here recall that S is assumed to
be a point. By applying the nonvanishing theorem to Z, there exists a positive
integer m′′3 such that if m′ ≥ m′′3 , then H0(Z,m′g∗D|Z) , 0. Here we may
assume that m′′3 ≥ max{m2,m1 + ckm}. Hence by surjectivity, H0(X,m′D) , 0.
The proof of the nonvanishing theorem is finished. □

Remark 2.1.4 The original basepoint-free theorem only treats the case E =
0, but the proof is exactly the same ([76]). As in the proof, even if we assume
that E = 0 in the beginning, F , 0 appears naturally after taking a log reso-
lution. Therefore, it is natural to consider E , 0 in the beginning. Also, in the
statement of the nonvanishing theorem, E appears in the beginning ([127]). In
order to apply the basepoint-free theorem to the abundance theorem, according
to [28], we show the general form with E.

In the former half of the above proof, we apply the vanishing theorem to a
linear system which appears naturally in the process, while in the latter half, we
apply the vanishing theorem to a linear system which is artificially constructed.
The latter method is called Shokurov’s concentration method of singularities.

The argument of proving the basepoint-free theorem by using the vanishing
theorem was originally developed in [57]. In dimension 3, the nonvanishing
theorem follows easily from the Riemann–Roch theorem. Later this argument
was applied by Shokurov ([127]) to the proof of the nonvanishing theorem, and
hence the basepoint-free theorem is proved in any dimension. Furthermore, it
was shown in [55] that this argument can be applied to the proof of the cone
theorem using the rationality theorem discussed in Section 2.3. It was also used
in the establishment of the abundance conjecture ([51]). So this argument has
been found to have a wide range of applications, and is known as the X-method.

2.1.2 Paraphrasings and generalizations

The following corollary is an equivalent statement of the basepoint-free theo-
rem:

Corollary 2.1.5 Suppose that f : (X, B) → S , D, E satisfy the assumptions
of Theorem 2.1.1. Then there exists a projective morphism g : Z → S from
a normal algebraic variety, a surjective projective morphism h : X → Z with
connected geometric fibers such that f = g ◦ h, and a g-ample Cartier divisor
H such that h∗H ∼ D.
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Proof By the basepoint-free theorem, there exists a positive integer m3 such
that for m ≥ m3, mD is f -free. Denote by ϕm = h′m ◦ hm : X → Zm →

Z′m the Stein factorization of the associated morphism over S , and denote by
gm : Zm → S the induced morphism. By construction, there exists a gm-ample
Cartier divisor Hm on Zm such that mD ∼ h∗mHm.

Note that, for a curve C on X such that f (C) is a point on S , hm(C) is a point
on Zm if and only if (D · C) = 0. By Zariski’s main theorem, there exists an
isomorphism km : Zm → Zm+1 such that km◦hm = hm+1. Take H = k∗mHm+1−Hm,
then h∗mH ∼ D. □

Corollary 2.1.6 Let (X, B) be a KLT pair and let f : X → S be a projective
morphism. Assume that KX + B is f -nef and B is an f -big Q-Cartier divisor.
Then there exists a projective morphism g : Z → S from a normal algebraic
variety, a surjective projective morphism h : X → Z with connected geometric
fibers such that f = g◦h, and a g-ample Q-Cartier divisor H such that h∗H ∼Q

KX + B.

Proof The assertion is local, so we may assume that S is affine. As the coeffi-
cients of B are in Q, there exists a positive integer m1 such that D = m1(KX+B)
is an f -nef Cartier divisor. As B is f -big, there exists an f -ample Q-Cartier di-
visor A and an effective Q-Cartier divisor E such that we can write B = A+ E.
For a sufficiently small positive rational number ϵ, (X, (1 − ϵ)B + ϵE) is KLT.
Also, D − (KX + (1 − ϵ)B + ϵE) = (m1 − 1)(KX + B) + ϵA is f -ample. We get
the conclusion by the above corollary. □

Remark 2.1.7 The condition that the coefficients of B are rational numbers
can be removed by using the cone theorem (Corollary 2.4.13).

The following lemma is useful when generalizing statements for KLT pairs
to DLT (divisorially log terminal) pairs.

Lemma 2.1.8 ([86]) Let (X, B) be a DLT pair, let f : X → S be a projective
morphism, let H be a relatively ample divisor on X, and let ϵ be a positive real
number. Assume that S is quasi-projective. Then there exists an ample divisor
A on S and an effective R-divisor B′ on X such that B+ ϵ(H + f ∗A) ∼R B′ and
the pair (X, B′) is KLT.

Proof We can choose an ample divisor A on S such that H + f ∗A is ample on
X. Take a log resolution g : (Y,C)→ (X, B) in strong sense, denote h = f ◦g. By
the definition of DLT, we may assume that the coefficients of the exceptional
divisors in C are strictly less than 1; note that here we use the fact that DLT
is equivalent to WLT (see Remark 1.11.4). Take a sufficiently small effective
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Q-divisor E supported on the exceptional set of g such that −E is g-ample,
⌞C + E⌟ = ⌞C⌟, and g∗(H + f ∗A) − E is ample on Y .

Write B =
∑

biBi, where Bi are distinct prime divisors and write g−1
∗ B =∑

biB′i the strict transform on Y . We can choose a positive integer m such that
for every i, the divisorial sheaf OY (B′i + m(g∗(H + f ∗A) − E)) is generated
by global sections. By taking a general global section, we can find a general
effective divisor D′i ∼ B′i+m(g∗(H+ f ∗A)−E). Take a sufficiently small positive
real number δ and take

C′ = C − δ
∑

biB′i + δ
∑

biD′i + mδ
∑

biE

∼R C + mδ
∑

bi(g∗(H + f ∗A)).

Note that the support of C′ is a normal crossing divisor as D′i are general, and
the coefficients of C′ are less than 1 as δ is sufficiently small. Then we can take
B′ = g∗C′ = (1−δ)B+δ

∑
big∗D′i ∼R B+mδ

∑
bi(H+ f ∗A). Note that KX +B′

is R-Cartier and f ∗(KX + B′) = KY +C′, which implies that (X, B′) is KLT. □

Now we can show the basepoint-free theorem for DLT pairs:

Corollary 2.1.9 (Basepoint-free theorem) Let (X, B) be a DLT pair, let f :
X → S be a projective morphism, and let D, E be Cartier divisors on X. As-
sume the following conditions:

(1) D is relatively nef.

(2) There exists a positive integer m1 such that m1D+E−(KX+B) is relatively
ample.

(3) E is effective and there exists a positive integer m2 such that for any integer
m ≥ m2, the natural homomorphism f∗(OX(mD))→ f∗(OX(mD+E)) is an
isomorphism.

Then there exists a positive integer m3 such that for any integer m ≥ m3, mD is
relatively free. That is, the natural homomorphism f ∗ f∗(OX(mD)) → OX(mD)
is surjective.

Proof As the assertion is local, we may assume that S is affine. Take B′ ∼R

B + ϵ(H + f ∗A) as in Lemma 2.1.8 such that (X, B′) is KLT. If ϵ is sufficiently
small, then m1D + E − (KX + B′) is still relatively ample. Then the corollary
follows. □



96 CHAPTER 2. THE MINIMAL MODEL PROGRAM

2.2 An effective version of the basepoint-free theorem

The basepoint-free theorem states that a multiple of a certain Cartier divisor is
free. Its effective version shows how large this multiple can be taken in prac-
tice. The proof is not just a refinement of the proof of the basepoint-free theo-
rem, but it actually needs to use the conclusion of the noneffective version on
the existence of such a morphism.

Theorem 2.2.1 (Effective basepoint-free theorem [84]) Let (X, B) be a KLT
pair consisting of an n-dimensional algebraic variety and an R-divisor, let E
be an effective Cartier divisor on X, let D be a Cartier divisor on X, and let
f : X → S be a projective morphism. Assume the following conditions hold:

(1) D is f -nef and D + E − (KX + B) is f -nef and f -big.
(2) The natural homomorphism

f∗OX(mD)→ f∗OX(mD + E)

is bijective for any positive integer m.

Then for any m ≥ 2n + 3, |mn+1D| is f -free, that is, the natural homomor-
phism

f ∗ f∗OX(mn+1D)→ OX(mn+1D)

is surjective. Therefore, there exists a positive integer m0 depending only on
the dimension n such that |mD| is f -free for any m ≥ m0.

Proof We may assume that S is affine. Note that in this case “ample over S ”
or “free over S ” is simply the same as “ample” or “free”. By slightly perturbing
the coefficients of B, we may assume that D + E − (KX + B) is ample.

By Corollary 2.1.5 of the basepoint-free theorem, there exists a normal al-
gebraic variety Y , a surjective projective morphism g : X → Y over S with
connected geometric fibers, and a relatively ample Cartier divisor H on Y such
that D = g∗H. Denote by h : Y → S the morphism such that f = h ◦ g and
d = dim Y . Take Xs,Ys to be the fibers over a general point s in h(Y) and denote
ds = dim Ys ≤ d ≤ n.

First, we show the effective version of the nonvanishing theorem (see Theo-
rem 2.1.3). By the vanishing theorem, for m > 0,

h0(Xs,mD) = h0(Xs,mD + E) = χ(Xs,mD + E).

By the nonvanishing theorem, the latter is a nonzero polynomial of degree ds

and has at most ds distinct roots.
We claim that for m ≥ 2ds+3, H0(Xs,mD) , 0. Take ds+1 pairs {i,m−i} (1 ≤
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i ≤ ds+1). If H0(Xs,mD) = 0, then either H0(Xs, iD) = 0 or H0(Xs, (m−i)D) =
0, which implies that χ(Xs,mD + E) has at least ds + 1 roots, a contradiction.
Therefore, H0(Xs,mD) , 0 for m ≥ 2ds + 3.

The theorem can be reduced to the following lemma:

Lemma 2.2.2 Fix any m ≥ 2d + 3 and take an irreducible component Z̄ of
the base locus

Bs |mH| = Supp(Coker(h∗h∗OY (mH)→ OY (mH))).

Then for any k ≥ 2d + 3, Z̄ 1 Bs |kmH|.

Let us continue the proof by assuming Lemma 2.2.2. Note that g−1(Bs |mH|) =
Bs |mD|. Fix any m ≥ 2d + 3, Lemma 2.2.2 shows that the dimension of the
base locus Bs |m jD| is decreasing for 1 ≤ j ≤ d + 1. When j = d + 1, the base
locus becomes an empty set, which concludes the former assertion. The inter-
esting point of this proof is that, no matter how many irreducible components
there are in the base locus, the above lemma can be applied to every irreducible
component of the base locus at the same time to cut down the dimension of the
base locus by multiplying by m.

Take two distinct prime numbers p, q ≥ 2d + 3. Then |pd+1D| and |qd+1D|
are free. There exists a positive integer m0 such that any integer m ≥ m0 can
be expressed as m = apd+1 + bqd+1 for some a, b ∈ Z>0 and hence |mD| is free.
This proves the latter assertion. □

Proof of Lemma 2.2.2 Note that h(Z̄) is a subset of h(Y), and they may not
coincide. Denote Z = g−1(Z̄). The proof is by applying the argument in the
basepoint-free theorem to the pullback of the neighborhood of the generic point
of Z̄ by g.

First, we construct singularities in a neighborhood of Z. Denote d̄ = dim Z̄.
Take d − d̄ + 1 divisors corresponding to general global sections of OY (mH),
say, M̄i (1 ≤ i ≤ d − d̄) and N̄. Note that the supports of M̄i and N̄ all contain
Bs |mH|, but they are free outside Bs |mH|. Take sufficiently small numbers
ϵ, δ > 0 and take M = (1 − δ)

∑
i g∗M̄i + ϵg∗N̄. Take a neighborhood Ū of the

generic point of Z̄ and denote U = g−1(Ū). By shrinking Ū, we may assume
that it does not intersect irreducible components of Bs |mH| other than Z̄. Here
note that Z̄ is not necessarily contained in Ū.

Since Z̄ has codimension d − d̄, by Corollary 1.11.8, we may assume that
the pair (X, B + M) is KLT on U \ Bs |mD| but not LC in the neighborhood of
any point in U ∩ Z by taking ϵ, δ appropriately and shrinking U.

Take a log resolution µ : X′ → (X, B+M) in strong sense and write µ∗(KX +

B) = KX′ + B′. The coefficients of B′ are all less than 1. Take an effective
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divisor F supported on the exceptional set of µ such that −F is µ-ample. Take
a sufficiently small positive number ϵ′ such that the coefficients of B′ + ϵ′F are
all less than 1 and µ∗(D + E − (KX + B)) − ϵ′F is ample.

Consider the LC threshold c as the following: On µ−1(U), the coefficients
B′ + cµ∗M + ϵ′F are all no greater than 1, and at least one coefficient is exactly
1. Here c < 1 as (X, B + M) is not LC on U ∩ Z, and note that outside µ−1(U)
the coefficients may be greater than 1. Write

µ∗(KX + B + cM) + ϵ′F = KX′ + F0 + B′′.

Here F0 is the sum of all irreducible components with coefficient 1 intersecting
µ−1(U). By perturbing the coefficients of F and shrinking Ū, we may assume
that F0 is irreducible, g ◦ µ(F0) = Z̄, and ⌞B′′⌟ ≤ 0 on µ−1(U).

For a positive integer m′, consider the following exact sequence

0→ OX′ (µ∗(m′D + E) − ⌞B′′⌟ − F0)→ OX′ (µ∗(m′D + E) − ⌞B′′⌟)

→ OF0 ((µ∗(m′D + E) − ⌞B′′⌟)|F0 )→ 0.

If m′ ≥ c((d − d̄)(1 − δ) + ϵ)m + 1, then

µ∗(m′D + E) − B′′ − F0 − KX′

≡(m′ − c((d − d̄)(1 − δ) + ϵ)m − 1)µ∗D + µ∗(D + E − (KX + B)) − ϵ′F

is ample. By the vanishing theorem, higher cohomologies of the first and the
third terms in the exact sequence vanish, and the following natural homomor-
phism is surjective:

H0(X′, µ∗(m′D + E) − ⌞B′′⌟)→ H0(F0, (µ∗(m′D + E) − ⌞B′′⌟)|F0 ).

On the other hand, as the support of (B′′)− is contained in the exceptional set
of µ, we have an injective homomorphism

H0(X′, µ∗(m′D + E) − ⌞B′′⌟)→ H0(X,m′D + E)

and a bijective homomorphism

H0(Y,m′H)→ H0(X,m′D + E).

Therefore, for m′ ≥ (d − d̄ + 1)m, the image of the natural homomorphism

H0(Y,m′H)→ H0(Z̄,m′H|Z̄)→ H0(F0, µ
∗(m′D + E)|F0 )

contains H0(F0, (µ∗(m′D + E) − ⌞B′′⌟)|F0 ).
Recall that ⌞B′′⌟ ≤ 0 on µ−1(U). This means that there might be some irre-

ducible component of B′′ with coefficient greater than 1, but it does not inter-
sect µ−1(U).
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Take a general point t in h(Z̄) and denote by F0,t the fiber of F0 over t. Since
⌞B′′⌟ ≤ 0 on µ−1(U), we have injective homomorphisms

H0(F0,t, (µ∗g∗(m′H))|F0,t )→ H0(F0,t, (µ∗(m′D + E))|F0,t )

→ H0(F0,t, (µ∗(m′D + E) − ⌞B′′⌟)|F0,t ).

By the vanishing theorem, for m′ ≥ (d − d̄ + 1)m,

h0(F0,t, (µ∗(m′D + E) − ⌞B′′⌟)|F0,t ) = χ(F0,t, (µ∗(m′D + E) − ⌞B′′⌟)|F0,t ).

As H is ample on Y , this is a nonzero polynomial of degree at most d̄, and
hence has at most d̄ zeros.

Note that if the image of H0(Y,m′H)→ H0(Z̄,m′H|Z̄) is not 0, then Z̄ is not
contained in the base locus of |m′H|. Hence

Z̄ ⊂ Bs |(d − d̄ + j)mH|

could be true only for at most d̄ values of j ≥ 1. Using a similar argument as
in the proof of the effective basepoint-free theorem, for k ≥ 2d + 3,

Z̄ 1 Bs |kmH|.

□

2.3 The rationality theorem

The rationality theorem which will be proved in this section is a key point of
the proof of the cone theorem discussed in Section 2.4.

The first part of the rationality theorem shows that a certain threshold is a ra-
tional number. It concludes the existence of extremal rays in the cone theorem.
The second part gives an estimate of the denominator of the threshold, which
concludes the discreteness of extremal rays. As we will explain in Section 2.4,
the discreteness of extremal rays can be proved alternatively by the estimate
of the lengths of extremal rays. The latter argument uses the theorem on the
existence of rational curves which depends on methods of algebraic geometry
in positive characteristics.

The proof of the cone theorem uses the argument in the basepoint-free the-
orem. It was developed in [55], which completed the formulation of the MMP.
Reid ([119]) observed that the rationality statement is the key for the general-
ization of Mori’s cone theorem ([100]) to singular varieties. We will prove it
by using the argument of the basepoint-free theorem.
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Theorem 2.3.1 (Rationality theorem [76, Theorem 4.1.1]) Let (X, B) be a
KLT pair where B is a Q-divisor, let f : X → S be a projective morphism, and
let A be a relatively nef and relatively big Cartier divisor. Assume that KX + B
is not relatively nef. Then the threshold

r = max{t ∈ R | A + t(KX + B) is relatively nef}

is a rational number. Moreover, denote by a the minimal positive integer such
that a(KX + B) is Cartier and denote by b the maximal dimension of fibers of
f , if we write r/a = p/q as an irreducible fraction, then

q ≤ a(b + 1).

Proof The proof is by exploring the proof of the basepoint-free theorem in
more detail. To get a contradiction, we assume that either r is not a rational
number or r is a rational number but q > a(b + 1).

Step 1. Clearly r is a positive real number. We may assume that S is affine.
We will show that we may assume that A is free and relatively ample.

By Theorem 2.1.1, we can take sufficiently large integers m, n such that a <
mr, (mn, q) = 1 (if r is rational), and A′ = n(mA + a(KX + B)) is free and big.
Then the threshold

r′ = max{t ∈ R | A′ + t(KX + B) is relatively nef}

satisfies the relation mnr = an + r′. So r is rational if and only if r′ is rational.
Moreover, if r′ is rational and we write r′/a = p′/q′ as an irreducible fraction,
then q = q′. So after replacing A by A′, we may assume that A is free.

Moreover, from the construction of A′ and the fact that a < mr, we can see
that if (A · C) = 0 for a relative curve C, then ((KX + B) · C) = 0. So as in the
proof of Corollary 2.1.5, there exists a projective morphism f0 : X → X0 over
S induced by A such that A = f ∗0 (A0) and KX +B = f ∗0 (KX0 +B0), where A0 is a
relatively ample Cartier divisor on X0, B0 = ( f0)∗B and a(KX0 + B0) is Cartier.
Here note that f0 is birational as A is relatively big. Then after replacing X, B, A
by X0, B0, A0, we may assume that A is relatively ample.

Step 2. The following lemma plays a similar role as the nonvanishing theo-
rem in the proof of the basepoint-free theorem. Here our assumption is more
general than that in [76] and the proof is irrelevant to the nonvanishing theo-
rem.

Lemma 2.3.2 ([76, Lemma 4.1.2]) Let (X, B) be a projective KLT pair, let
D1,D2, E be Cartier divisors on X, let d be a positive integer, and let r′, s be
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positive real numbers. For integers x, y, denote D(x, y) = xD1 + yD2. Assume
the following conditions:

(1) E is effective.
(2) There exists a positive integer y1 such that if x > 0, y ≥ y1, and y− r′x < s,

then D(x, y) + E − (KX + B) is nef and big and the natural homomorphism
H0(X,D(x, y))→ H0(X,D(x, y) + E) is bijective.

(3) The polynomial χ(X,D(x, y) + E) in two variables x, y is of degree at most
d and not identically 0.

(4) Either r′ is irrational, or r′ is rational and qs > d + 1, where we write
r′ = p/q as an irreducible fraction.

Then there exists a positive integer y2 such that H0(X,D(x, y) + E) , 0 if
y − r′x < s and y ≥ y2.

Proof If r′ is irrational, then there are infinitely many couples of positive
integers (x, y) such that 0 < y− r′x < s/(d+ 1). If r′ is rational, then as p, q are
coprime, there are infinitely many couples of positive integers (x, y) such that
y − r′x = 1/q < s/(d + 1). So in either case, there are infinitely many couples
of positive integers (x, y) such that 0 < y − r′x < s/(d + 1). We may assume
that y ≥ y1 in each couple.

For any such a couple (x0, y0), consider the polynomial χ(X,D(mx0,my0) +
E) in m. For any integer m such that 1 ≤ m ≤ d+1, my0−mr′x0 < s holds, and
hence D(mx0,my0) + E − (KX + B) is nef and big. By the vanishing theorem,
higher cohomologies vanish and

χ(X,D(mx0,my0) + E) = dim H0(X,D(mx0,my0) + E).

On the other hand, if H0(X,D(mx0,my0) + E) = 0 for all 1 ≤ m ≤ d + 1, then
χ(X,D(x, y) + E), which is a polynomial of degree at most d in two variables,
is identically 0 on the line y0x − x0y = 0. By construction, there are infinitely
many such lines and χ(X,D(x, y) + E) cannot be identically 0 on all such lines
since y0/x0 takes infinitely many values. Hence there exists a couple (x, y) such
that x > 0, y ≥ y1, 0 < y − r′x < s, and H0(X,D(x, y) + E) , 0.

If such a positive integer y2 in the assertion does not exist, then there are
infinitely many couples of positive integers (x′, y′) such that y′ − r′x′ < s,
x′ > dx, y′ ≥ y1 + dy, and H0(X,D(x′, y′) + E) = 0. Since

H0(X,D(x, y)) � H0(X,D(x, y) + E) , 0,

we know that H0(X,D(x′ − mx, y′ − my) + E) = 0 for 0 ≤ m ≤ d. So again
by the vanishing theorem, χ(X,D(x̄, ȳ) + E) is identically 0 on infinitely many
lines y(x̄ − x′) − x(ȳ − y′) = 0, a contradiction. This concludes the lemma. □
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Step 3. If r is rational, then by the assumption that q > a(b + 1), we may
take a sufficiently small positive real number δ such that q(1− δ) > a(b+ 1). If
r is irrational, just take any 0 < δ < 1. Take E, d, r′, s to be 0, b, r/a, (1 − δ)/a,
respectively, and take D(x, y) = xA + ay(KX + B).

Applying Lemma 2.3.2 to the generic fiber of f , we know that there exists a
couple of positive integers (x, y) such that

0 < ay − rx < 1 − δ and H0(X,D(x, y)) , 0.

Here we can have ay−rx > 0 by the first paragraph of the proof of Lemma 2.3.2.
Note that since S is affine, the nonvanishing of H0 on the generic fiber implies
the nonvanishing on X.

Fix such a couple (x, y). Since ay − rx > 0, D(x, y) is not relatively nef, and
therefore the linear system |D(x, y)| has basepoints. Taking a general element
M ∈ |D(x, y)|, we are going to apply the argument in the basepoint-free theorem
to kill the base locus and get a contradiction.

Take a log resolution g : Y → X of (X, B + M) in strong sense and write
h = f ◦ g and g∗(KX + B) = KY +C. Take the decomposition g∗M = M1 +M2,
where |M1| is free and M2 is the fixed part of |g∗M|.

Take an effective divisor C′ such that Exc(g) ∪ Supp(C + M2) = Supp(C′)
and −C′ is g-ample. Take a sufficiently small positive real number ϵ such that
δg∗A − rϵC′ is h-ample and ⌜−C − ϵC′⌝ = ⌜−C⌝ ≥ 0. Consider the following
threshold:

c = sup{t ∈ R | ⌞tM2 +C + ϵC′⌟ ≤ 0}.

We may assume that there exists exactly one prime divisor Z attaining the
maximal coefficient 1 in cM2 +C + ϵC′. Note that g(Z) is contained in the base
locus Bs |D(x, y)|. Write

cM2 +C + ϵC′ = F + Z.

Here the support of F does not contain the prime divisor Z and ⌜−F⌝ ≥ 0.
For a couple of integers (x′, y′), consider

g∗D(x′, y′) − F − Z − KY

≡ (x′ − cx)g∗A + (ay′ − acy)g∗(KX + B) + cM1 − (KY +C + ϵC′).

This R-divisor is h-ample if x′ > cx, y′ > cy + 1/a, and r(x′ − cx) ≥ a(y′ −
cy) − 1 + δ (that is, ay′ − rx′ ≤ c(ay − rx) + 1 − δ). In particular, the last one is
satisfied if ay′ − rx′ < 1 − δ.

Therefore, if x′ > cx, y′ > cy + 1/a, and ay′ − rx′ < 1 − δ, then by Theo-
rem 1.9.1,

H1(Y, g∗D(x′, y′) + ⌜−F⌝ − Z) = 0
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and the natural homomorphism

H0(Y, g∗D(x′, y′) + ⌜−F⌝)→ H0(Z, g∗D(x′, y′)|Z + ⌜−F⌝|Z)

is surjective. On the other hand, the natural map

H0(Y, g∗D(x′, y′))→ H0(Y, g∗D(x′, y′) + ⌜−F⌝)

is bijective. By the commutative diagram

H0(Y, g∗D(x′, y′)) −−−−−−→ H0(Y, g∗D(x′, y′) + ⌜−F⌝)y y
H0(Z, g∗D(x′, y′)|Z) −−−−−−→ H0(Z, (g∗D(x′, y′) + ⌜−F⌝)|Z),

the bottom horizontal arrow is surjective.
Denote BZ = (F + ⌜−F⌝)|Z , then the pair (Z, BZ) is KLT. We may apply

Lemma 2.3.2 to the generic fiber of h|Z : Z → S . Here we take D1,D2, E to
be the restrictions of g∗A, ag∗(KX + B), ⌜−F⌝, and take d, r′, s to be b, r/a,
(1 − δ)/a, respectively. It can be checked that the conditions of Lemma 2.3.2
are satisfied, where (1), (2), and (4) are clear and (3) follows from the fact that
the dimensions of the fibers of g(Z) → S are at most b. So by Lemma 2.3.2,
g(Z) is not contained in Bs |D(x′, y′)| if ay′ − rx′ < 1 − δ and y′ is sufficiently
large.

Now consider a couple (x′, y′) satisfying 0 < ay′ − rx′ < 1 − δ with y′ suffi-
ciently large defined in the following way. If r is irrational, take a sufficiently
large integer l such that

x′ = ⌞aly/r⌟ = lx + ⌞l(ay − rx)/r⌟, y′ = ly,

and ay′ − rx′ < 1 − δ; if r is rational, take a sufficiently large integer l and take

x′ = x + lq, y′ = y + lp.

Note that A is free and in the latter case l(qA + ap(KX + B)) is free by the
basepoint-free theorem, hence

Bs |D(x′, y′)| ⊂ Bs |D(x, y)|.

To summarize, starting from a couple (x, y) such that 0 < ay− rx < 1−δ and
H0(X,D(x, y)) , 0, we constructed a couple (x′, y′) such that 0 < ay′ − rx′ <
1 − δ and Bs |D(x′, y′)| ⊊ Bs |D(x, y)|. Applying Noetherian induction as in the
proof of the basepoint-free theorem, there exists a couple of positive integers
(x′′, y′′) such that 0 < ay′′ − rx′′ < 1 − δ and D(x′′, y′′) is free. This implies
that x′′A + ay′′(KX + B) is relatively nef, which contradicts the maximality of
r. □
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2.4 The cone theorem

The cone theorem, together with the basepoint-free theorem, are two main pil-
lars for the minimal model theory. Higher dimensional minimal model theory
began from the introduction of the concept of extremal rays in [100]. Bira-
tional geometry becomes visible by looking at cones and polyhedra in finite-
dimensional real vector spaces.

The cone theorem states that the cone of curves is locally a rational poly-
hedral cone in the part which intersects negatively with the canonical divisor.
This statement splits into two parts: the existence and the discreteness of ex-
tremal rays. The discreteness of extremal rays can be proved by the rationality
theorem proved in Section 2.3, or the boundedness of the lengths of extremal
rays which will be proved in Section 2.8. We will introduce both arguments,
the former stays in characteristic 0, while the latter uses positive characteristic
methods.

2.4.1 The contraction theorem

In general, a subset C in a finite-dimensional real vector space V is called a
cone if it is invariant under the map v 7→ tv for any t ∈ R∗. It is said to be
convex if for any v, v′ ∈ C and any t ∈ [0, 1], tv + (1 − t)v′ ∈ C . Consider a
closed convex cone C . A closed subset F of C is called a face if there exists
u ∈ V∗ such that C ⊂ Vu≥0 and F = Cu=0. Here Vu≥0 = {v ∈ V | (u, v) ≥ 0} and
Cu=0 = {v ∈ C | (u, v) = 0}. In particular, a half line which is a face is called an
extremal ray. Here u is called the supporting function of F.

Given two projective morphisms f : X → S and g : Y → S from normal
algebraic varieties, a projective morphism h : X → Y over S is called a con-
traction morphism if the natural homomorphism OY → h∗OX is bijective. In
other words, h is surjective and with connected geometric fibers. Here h is a
morphism over S means that g ◦ h = f . A contraction morphism is also called
an algebraic fiber space. Usually the former is used for birational morphisms,
and the latter is mainly used in the case dim Y < dim X. However, these can
often be handled in the same way.

Consider a face F of the closed cone of curves NE(X/S ) and a contraction
morphism h : X → Y . Then h is called the contraction morphism associated to
F if the following conditions are satisfied:

• For a curve C on X such that f (C) is a point, h(C) is a point if and only if
[C] ∈ F, in this case we say that C is contracted by h.

• The smallest closed convex cone containing the equivalence classes of curves
contracted by h coincides with F.
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In particular, h is not an isomorphism if F , 0.
By Zariski’s main theorem, the contraction morphism h is determined by the

face F and is independent of the choice of the supporting function.
The following contraction theorem is a consequence of the basepoint-free

theorem (Theorem 2.1.1):

Theorem 2.4.1 (Contraction theorem) Let (X, B) be a KLT pair, let f : X →
S be a projective morphism and let F be a face of NE(X/S ). Assume that the
supporting function u of F is defined over the rational number field and the
function on N1(X/S ) corresponding to KX +B takes negative values on F \ {0}.
Then the following assertions hold:

(1) The contraction morphism h : X → Y associated to F exists.
(2) The smallest linear subspace containing F coincides with the image of the

injective map N1(X/Y) → N1(X/S ) and F coincides with the image of
NE(X/Y).

(3) −(KX + B) is h-ample.
(4) For a Cartier divisor D on X, if its corresponding function on N1(X/S ) is

identically 0 on N1(X/Y), then there exists a Cartier divisor E on Y such
that D ∼ h∗E.

(5) ρ(X/S ) = ρ(Y/S ) + ρ(X/Y).

Proof (1) After taking a multiple of u, we may assume that it corresponds to
a Cartier divisor L. Then L is relatively nef.

As KX + B is negative on F \ {0}, NE(X/S )KX+B≥0 ∩ F = {0}. On the com-
pact subset (NE(X/S )KX+B≥0 \ {0})/R>0 in the (ρ(X/S )−1)-dimensional sphere
(N1(X/S ) \ {0})/R>0, the quotient of functions (KX + B)/L takes finite values,
and hence it is bounded. Therefore, there exists a sufficiently small positive real
number ϵ such that L − ϵ(KX + B) is positive on NE(X/S ) \ {0}. By Kleiman’s
criterion, L − ϵ(KX + B) is relatively ample.

Applying the basepoint-free theorem, after replacing L by a multiple of a
positive integer, we may assume that the natural homomorphism f ∗ f∗OX(L)→
OX(L) is surjective. Correspondingly, we get a projective morphism h̄ : X →
PS ( f∗OX(L)) over S . Here the latter is the projective scheme over S corre-
sponding to the coherent sheaf f∗OX(L). By definition, h̄∗OPS ( f∗OX (L))(1) �
OX(L).

Take the Stein factorization of h̄, we get a surjective morphism h : X → Y
to a normal algebraic variety and a finite morphism Y → PS ( f∗OX(L)). Take
g : Y → S to be the induced morphism.

We claim that h is the contraction morphism associated to F. First, for a
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curve C on X, if h(C) is a point, then OX(L) ⊗ OC � OC and hence (L ·C) = 0,
which implies that [C] ∈ F.

Second, take F′ to be the closed convex cone spanned by equivalence classes
of curves contracted by h, then F′ = NE(X/Y) ⊂ F. Assume, to the contrary,
that F′ , F, then there exists a Cartier divisor L′ on X which is positive on
F′ \ {0} but negative at some point of F. Note that L = h∗L′′ for some g-
ample Cartier divisor L′′. Since L′ is h-ample, for any sufficiently large m,
L′ +mh∗L′′ is f -ample. In this case, L′ +mh∗L′′ is positive on F \ {0}, but this
is a contradiction since h∗L′′ is identically 0 on F \ {0}.

(2) and (3) follow directly from (1).
(4) Since D is h-nef and D− (KX +B) is h-ample, the basepoint-free theorem

(Theorem 2.1.1) can be applied to D and h, which implies that there exists
a positive integer m1 such that mD is h-free for m ≥ m1. The corresponding
morphism X → Y ′ over Y coincides with h since mD ≡ 0 over Y . That is, there
exists a Cartier divisor Em on Y such that mD ∼ h∗Em. We can conclude (4) by
taking E = Em1+1 − Em1 .

(5) From (4), we get the following exact sequence

0→ N1(Y/S )→ N1(X/S )→ N1(X/Y)→ 0,

which concludes (5). □

Remark 2.4.2 The phenomenon in (4) suggests that the fibers of a contrac-
tion morphism are special varieties similar to P1. That is because, for example,
on elliptic curves there exist many Cartier divisors which are numerically 0 but
not 0. Later in Corollary 2.8.4, we will prove that the fibers of a contraction
morphism are covered by rational curves. However, rational curves with bad
singularities could have similar Cartier divisors as in the case of elliptic curves,
so we may expect a much stronger statement.

2.4.2 The cone theorem

The shape of the closed cone of curves NE(X/S ) varies, but according to the
following cone theorem, if restricted to the area taking negative values on the
canonical divisor, then locally it is generated by finitely many extremal rays.
By the contraction theorem, those extremal rays are associated with contraction
morphisms.

Theorem 2.4.3 (Cone theorem) Let (X, B) be a KLT pair and let f : X → S
be a projective morphism. Fix a relatively ample divisor A and a positive real
number ϵ. Then there are finitely many extremal rays Ri of the closed cone of
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curves NE(X/S ) ⊂ N1(X/S ) such that

NE(X/S ) = NE(X/S )KX+B+ϵA≥0 +
∑

Ri.

This equation means that the smallest convex cone containing all terms on the
right-hand side is the left-hand side. Moreover, after removing unnecessary
terms in the sum, for each i, KX + B is negative on Ri \ {0}, and there exists a
contraction morphism hi : X → Yi associated to the extremal ray Ri.

Proof We do induction on ρ(X/S ) = dim N1(X/S ). In the proof, the relative
setting plays an important role.

Step 1. We may assume that ϵ is a rational number. We will show that we
may also assume that B is a Q-divisor.

We may write KX + B =
∑

riDi, where D1, . . . ,Dt are Cartier divisors. We
may approximate real numbers ri by rational numbers r′i such that

∑
(ri−r′i )Di+

ϵA/3 is relatively ample.
As B′ =

∑
r′i Di − KX is not necessarily effective, we can write B′ = (B′)+ −

(B′)−. Here (B′)+, (B′)− are effective Q-divisors with no common irreducible
component. If taking r′i − ri sufficiently small, then the coefficients of (B′)− are
sufficiently small, and there exists an effective Q-divisor B′′ with sufficiently
small coefficients such that ϵA/3 − (B′)− ∼Q B′′.

Also by taking r′i − ri sufficiently small, we may assume that (X, (B′)+ + B′′)
is again KLT. Once we proved the assertion for (X, (B′)+ + B′′), the assertion
for (X, B) follows from the fact that

NE(X/S )KX+(B′)++B′′+ϵA/3≥0 ⊂ NE(X/S )KX+B+ϵA≥0.

Therefore, we may assume that B is a Q-divisor.

Step 2. If ρ(X/S ) = 1, then there is nothing to prove. So we assume that
ρ(X/S ) > 1 in the following. Also we may assume that KX + B is not relatively
nef.

For any relatively ample Q-divisor H, by the rationality theorem (Theo-
rem 2.3.1), the threshold

rH = max{t ∈ R | H + t(KX + B) is relatively nef} ∈ Q

determines a Q-divisor LH = H+ rH(KX +B). By construction, LH is relatively
nef but not relatively ample. We know that

FH = NE(X/S )LH=0

is a face of the closed cone of curves and satisfies the contraction theorem
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(Theorem 2.4.1). Denote by hH : X → YH the corresponding contraction mor-
phism.

Step 3. Take C to be the smallest closed convex cone containing NE(X/S )KX+B≥0

and all faces FH with LH .S 0. (Here we remark that such LH always exists as
ρ(X/S ) > 1.) We will show that the closed cone of curves NE(X/S ) coincides
with C . Note that in this step there might be infinitely many FH .

To the contrary, assume that C , NE(X/S ). Then under this assumption,
there exists a Q-divisor M such that (M·v) > 0 for all v ∈ C \{0} and (M·v0) < 0
for some v0 ∈ NE(X/S ). Moreover, M cannot be numerically equivalent to a
multiple of KX + B over S . Indeed, suppose that M ≡S t(KX + B) for some
t , 0, then t < 0 as M and −(KX + B) are positive on some FH \ {0}; on the
other hand, (M · v0) < 0 implies that v0 ∈ NE(X/S )KX+B≥0 \ {0} ⊂ C \ {0}, a
contradiction.

The dual closed convex cone (NE(X/S )KX+B≥0)∗ of NE(X/S )KX+B≥0 is just
the closed convex cone spanned by Amp(X/S ) and KX + B, because the dual
of the latter is NE(X/S )KX+B≥0.

As M is positive on NE(X/S )KX+B≥0\{0}, it is an interior point of (NE(X/S )KX+B≥0)∗.
Therefore, we can write M = H+t(KX+B) for some relatively ample Q-divisor
H and some positive rational number t.

Since M is not relatively nef, rH < t. On the other hand, since LH = H +
rH(KX + B) .S 0 (as M is not numerically equivalent to a multiple of KX + B
over S ), we have FH ⊂ C and hence M is positive on FH \ {0}. This is a
contradiction.

Step 4. Take C1 to be the closed convex cone containing NE(X/S )KX+B≥0

and all extremal rays of the form RH = FH . We will show that NE(X/S ) = C1.
Note that in this step there might be infinitely many extremal rays RH .

For a face FH with dim FH ≥ 2, we may apply Step 3 to FH = NE(X/YH) ⊂
NE(X/S ). Since (FH)KX+B≥0 = {0}, FH is generated by lower dimensional
faces.

Step 5. We will show the discreteness of extremal rays by applying the esti-
mate of denominators q ≤ a(b + 1) in the rationality theorem, that is, to show
that there are only finitely many extremal rays negative on KX + B + ϵA. Here
a, b are from the notation in the rationality theorem.

For each extremal ray Ri, take the associated contraction morphism hi : X →
Yi. Since −(KX + B) is hi-ample, there is a unique element vi ∈ Ri with (a(KX +

B) · vi) = −1.
Take relatively ample Cartier divisors H1, . . . ,Hρ(X/S )−1 such that together
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with a(KX + B) they form a basis of N1(X/S ). Since dim N1(X/Yi) = 1, we
can define ri j such that H j + ri j(KX + B) ≡ 0 over Yi. Applying the rationality
theorem (Theorem 2.3.1) to hi, we can express ri j/a = pi j/qi j as an irreducible
fraction and qi j ≤ a(b + 1). Therefore, (a(b + 1))!(H j · vi) ∈ Z.

Take a sufficiently large number N such that NA−H j is f -ample for all j. If
we only look at extremal rays Ri such that ((KX + B + ϵA) · vi) < 0, then

(H j · vi) < (NA · vi) < N/aϵ,

and hence there are only finitely many possible values for (H j · vi). This means
that there are only finitely many extremal rays generated by such vi.

Step 5’. Let us give another proof of the discreteness of extremal rays by
applying the estimate of the lengths of extremal rays instead of the rationality
theorem.

Keep the notation in the last step. By Corollary 2.8.4, there exists an hi-
relative curve Ci such that (−(KX + B) · Ci) ≤ 2b. If we only look at extremal
rays Ri such that ((KX +B+ ϵA) ·Ci) < 0, then (A ·Ci) < 2b/ϵ. As the degree of
Ci is bounded, there exists a scheme of finite type W and a closed subscheme
V of X × W such that all Ci appear as fibers of the projection ϕ : V → W.
Therefore, there are only finitely many numerical equivalence classes of those
Ci.

Also we can use the following argument. Since (−a(KX + B) ·Ci) ≤ 2ab and
(H j · Ci) ∈ Z, we have (2ab)!(H j · vi) ∈ Z. Then we can argue the same as the
end of Step 5. □

Remark 2.4.4 (1) The contraction theorem was first proved in the case that
X is smooth, B = 0, and dim X ≤ 3 ([100]). The proof is by completely
classifying the contraction morphisms. The classification shows for the
first time that even if we start from a smooth X, the image Y of the con-
traction morphism may have singularities, which is different from the sur-
face case. The general contraction theorem was proved in a completely
different way as an application of the basepoint-free theorem ([56, 55]).

(2) The cone theorem was first proved in the case that X is smooth and B = 0
(Mori [100]). The proof efficiently uses Frobenius morphisms which is
a special method of algebraic geometry in positive characteristics (Theo-
rem 2.7.2 discussed later is an application of this method). However, the
deformation theory used in this method is difficult to be generalized to al-
gebraic varieties with singularities, so it is limited as in the minimal model
theory we cannot avoid dealing with algebraic varieties with singularities.
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Therefore, a completely different proof was developed by extending that
of the basepoint-free theorem ([55]).

(3) In Step 5’ of the proof, it might be possible to get a stronger estimate of
the lengths of extremal rays (−(KX + B) · C) ≤ b + 1. This is still an open
problem.

(4) When considering an extremal ray R in this book, we always assume that
the log canonical divisor KX + B takes negative values on the complement
set of the origin R \ {0}. Such an extremal ray is called a (KX + B)-negative
extremal ray.

Corollary 2.4.5 Keep the assumption of Theorem 2.4.3. Assume that S is
quasi-projective. Assume that B is R-Cartier and relatively big. Then there
are only finitely many extremal rays in the closed cone of curves NE(X/S ) ⊂
N1(X/S ) which take negative values on KX + B.

Proof Write B = A + E for some relatively ample R-divisor A and some
effective R-divisor E. We may take a sufficiently small positive real number ϵ
such that (X, (1 − ϵ)B + ϵE) is KLT. By Theorem 2.4.3, there are only finitely
many (KX + (1 − ϵ)B + ϵE + ϵA)-negative extremal rays. Therefore, the same
holds true for KX + B. □

It is easy to extend the cone theorem to DLT pairs:

Corollary 2.4.6 Let (X, B) be a DLT pair and let f : X → S be a projective
morphism. Assume that S is quasi-projective. Fix a relatively ample divisor A
and a positive real number ϵ. Then there exist finitely many extremal rays Ri of
NE(X/S ) ⊂ N1(X/S ) such that

NE(X/S ) = NE(X/S )KX+B+ϵA≥0 +
∑

Ri.

Moreover, after removing unnecessary terms in the sum, for each i, KX + B
is negative on Ri \ {0} and there exists a contraction morphism hi : X → Yi

associated to the extremal ray Ri.

Proof By Lemma 2.1.8, there is B′ ∼R,S B + 1
2 ϵA such that (X, B′) is KLT.

The corollary can be reduced to the cone theorem. □

2.4.3 Contraction morphisms in dimensions 2 and 3

In the following, we describe the contraction morphism associated to an ex-
tremal ray in dimension up to 3. First, let us consider the surface case.

Example 2.4.7 Consider the case that X is smooth, S = Spec k, B = 0, and
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dim X = 2. Here the base field k is algebraically closed of arbitrary character-
istic. The contraction morphism ϕ : X → Y associated to an extremal ray R
can be classified as the following ([100]).

(a) There exists a (−1)-curve C ⊂ X (see the context before Theorem 1.13.3)
such that R = R+[C]. Y is smooth, ϕ(C) = P is a point, and ϕ is the blowup
of Y at P. Conversely, a (−1)-curve always generates an extremal ray.

(b) ϕ : X → Y is a P1-bundle over a smooth curve Y and R = R+[C] for any
fiber C. In this case, X is called a ruled surface. Conversely, if X admits a
P1-bundle structure, then its fiber determines an extremal ray.

(c) X � P2, Y = Spec k, and R is generated by the equivalence class of a line on
P2.

It is important that, in each case, the extremal ray is generated by a curve
isomorphic to P1.

As we will see in Section 3.9, the theory of extremal rays can be extended
to algebraically nonclosed base field k. Take the base change X̄ = X × Spec k̄
to the algebraic closure, the classification can be generalized as the following.

(a’) There exist disjoint (−1)-curves C1, . . . ,Ct on X̄ such that a certain multiple
of their sum C = m

∑
Ci is defined over k and R = R+[C]. Y is smooth,

ϕ(C) = P is a point, and ϕ is the blowup of Y at P. Here the residue field of
P is an extension field of k.

(b’) ϕ : X → Y is a morphism to a smooth curve Y and R = R+[C] for any fiber
C. In this case, every fiber is isomorphic to a curve of degree 2 in P2 and X
is called a conic surface.

(c’) −KX is ample and ρ(X) = 1. Here ρ(X) = dim N1(X) is the Picard number.
Generally, a smooth projective surface with ample anti-canonical divisor is
called a del Pezzo surface. There is a classical classification of del Pezzo
surfaces.

We describe an example with infinitely many extremal rays.

Example 2.4.8 (Nagata’s example) By the cone theorem, there are only finitely
many (KX+B+ϵA)-negative extremal rays, but when taking the limit as ϵ → 0,
it is possible to have infinitely many extremal rays. Here the base field k is al-
gebraically closed of characteristic 0.

Given two curves C1,C2 of degree 3 on the projective plane P2 intersecting
at nine distinct points P1, . . . , P9. The rational function h defined by div(h) =
C1 − C2 determines a rational map h̄ : P2 99K P1. The indeterminacy locus
of h̄ is {P1, . . . , P9}. Blowing up along those points f : X → P2 resolves the
indeterminacy points and gives a morphism g = h̄ ◦ f .
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For a smooth curve C of degree 3 passing through these nine points, its strict
transform F = f −1

∗ C becomes a smooth fiber of g, and KX = −F. In particular,
F is an elliptic curve. The exceptional set of f consists of nine (−1)-curves Ei

(i = 1, . . . , 9), which are sections of g.
The generic fiber Fη of g is an elliptic curve defined over the field k(P1).

Take Qi = Ei ∩ Fη. Consider the additive group structure on Fη with Q1 as the
origin. If C1,C2 are chosen generally, Q2 is not a torsion point with respect to
the addition, that is, mQ2 , Q1 for all positive integer m. Take Gm to be the
closure of mQ2 in X, which is a section of g. Then Gm � P1 and (KX ·Gm) = −1.
That is, Gm is a (−1)-curve. In this case, there are infinitely many extremal rays.

Take S = {(P1, . . . , P9) ∈ (P2)9 | Pi , P j (i , j)}. The projection P2 × S →
S naturally admits nine sections. Take f̃ : X → P2 × S to be the blowup along
those sections, then the above constructed X is a fiber of the smooth morphism
π : X → S . That is, π is a deformation family of X.

As (−1)-curves are preserved by small deformations, for each m there exists
a nonempty open set Um and a closed subvariety G̃m of π−1(Um) such that
G̃m ∩ X = Gm and on each fiber Xs = π

−1(s) (s ∈ Um), G̃m ∩ Xs is a (−1)-curve.
In the case that the base field k is the complex number field, the intersection
U =

⋂
Um is not empty, and for each s ∈ U, Xs has infinitely many extremal

rays.

Generally, if there exists a nonempty open set such that a property holds for
each point in this set, then we say that this property holds for general points; if
a property holds for each point in the intersection of countably infinitely many
nonempty open sets, like the above U, then we say that this property holds for
very general points. So a very general fiber of π has infinitely many extremal
rays.

The 3-dimensional case is as follows.

Example 2.4.9 Consider the case that X is smooth, S = Spec k, B = 0, and
dim X = 3. The contraction morphism ϕ : X → Y associated to an extremal
ray R can be classified as the following ([100]). Here the base field k is alge-
braically closed of characteristic 0.

(1) The exceptional set of ϕ is a prime divisor E and ϕ is the blowup of Y
along ϕ(E). However, Y is not necessarily smooth. E and ϕ are classified
as the following.

(a) ϕ(E) = P is a point, E � P2, and OE(E) � OP2 (−1). In this case, Y is
smooth.

(b) ϕ(E) = P is a point, E � P2, and OE(E) � OP2 (−2). If k = C, then
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(Y, P) is analytically isomorphic to the cyclic quotient singularity of
type 1

2 (1, 1, 1).
(c) ϕ(E) = P is a point, E is isomorphic to the quadratic surface in P3

defined by the equation xy + zw = 0, and OE(E) � OE(−1). E is iso-
morphic to P1 × P1. If k = C, then the singularity (Y, P) is analytically
isomorphic to the hypersurface singularity defined by xy + zw = 0 in
C4.

(d) ϕ(E) = P is a point, E is isomorphic to the quadratic surface in P3

defined by the equation xy + z2 = 0, and OE(E) � OE(−1). If k = C,
then the singularity (Y, P) is analytically isomorphic to the hypersur-
face singularity defined by xy + z2 + w3 = 0 in C4.

(e) ϕ(E) = C is a smooth projective curve, ϕ|E : E → C is a P1-bundle,
and (E · F) = −1 for each fiber F. In this case, Y is smooth.

(2) Y is a smooth projective surface and the geometric generic fiber of ϕ is
isomorphic to P1. Every fiber of ϕ is isomorphic to a conic curve in P2,
hence X is called a conic bundle.

(3) Y is a smooth projective curve, the geometric generic fiber of ϕ is a del
Pezzo surface.

(4) Y is a point and X is a Fano variety of Picard number ρ(X) = 1. Generally,
a projective algebraic variety X is called a Fano variety if −KX is ample.
3-dimensional smooth Fano varieties are classified ([48, 49, 103, 104]).

2.4.4 The cone theorem for the space of divisors

By dualizing the contraction theorem and the cone theorem, we can describe
them in terms of the space of divisors as the following. The paraphrase is pow-
erful when considering changing of birational models. For example, when the
nef cones of two birational models adjoin along a face of both cones, the phe-
nomenon of wall crossing is important, and can be described appropriately in
the space of divisors. Here a wall is a face of codimension 1, which is the dual
concept of an extremal ray.

Theorem 2.4.10 Let (X, B) be a KLT pair and let f : X → S be a projec-
tive morphism. Fix a relatively ample divisor A and a positive real number
ϵ. Assume that KX + B + ϵA is not f -nef. Take Ri (i = 1, . . . ,N) to be all
(KX + B + ϵA)-negative extremal rays and take hi : X → Yi to be the con-
traction morphism associated to Ri. Take the rational linear functional li on
N1(X/S ) defined by li(u) = (u · vi), where vi ∈ Ri is a nonzero rational point.
Then the following assertions hold:

(1) li is nonnegative on Amp(X/S ).
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(2) Gi = {u ∈ Amp(X/S ) | li(u) = 0} is a face of codimension 1 in Amp(X/S )
which coincides with h∗i Amp(Yi/S ).

(3) Take F to be the face of NE(X/S ) generated by several extremal rays
Ri1 , . . . ,Rir and take h : X → Y to be the associated contraction mor-
phism. Then

G =
r⋂

j=1

Gi j = {u ∈ Amp(X/S ) | (u · v) = 0 for all v ∈ F}

is h∗Amp(Y/S ).
(4) For any f -ample R-divisor H, take

t0 = min{t | KX + B + ϵA + tH is f -nef},

then there exists a face G of the form G =
⋂r

j=1 Gi j such that [KX + B +
ϵA + t0H] is a relative interior point of G. In other words, it is contained
in h∗Amp(Y/S ).

Proof (1) This follows from Ri ⊂ NE(X/S ).
(2) By the contraction theorem, Gi = h∗i Amp(Yi/S ) is of codimension 1.
(3) This is a consequence of the contraction theorem.
(4) By definition, u = [KX+B+ϵA+ t0H] is the supporting function of a face

F of NE(X/S ) such that KX + B is negative on F \ {0}. By the cone theorem,
such a face is generated by extremal rays, say Ri1 , . . . ,Rir , which implies that
u is contained in G =

⋂r
j=1 Gi j . As u is the supporting function of F, u is an

interior point of G. □

Remark 2.4.11 In other words, the cone theorem can be explained as the
following: Imagine the nef cone as a planet and [KX + B] ∈ N1(X/S ) as a
satellite moving around it. Suppose that the nef cone is opaque. First, if [KX +

B] ∈ Amp(X/S ), then we can observe nothing and hence the statement is void.
If [KX + B] < Amp(X/S ), then we can observe the front side V of the surface
∂Amp(X/S ) of the nef cone. The back side ∂Amp(X/S )\V cannot be observed,
just like the back of the moon.

When we look at the planet from a slightly closer observation point [KX +

B+ϵA] ∈ N1(X/S ), the surface V looks like a polyhedron consisting of finitely
many faces Gi. If we move the observation point to the limit [KX+B] as ϵ → 0,
in the case with infinitely many extremal rays, there turns out to be infinitely
many faces converging to the horizon.

As a corollary, we get the basepoint-free theorem for R-divisors:

Corollary 2.4.12 Let (X, B) be a KLT pair, let f : X → S be a projective
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morphism, and let D be an R-Cartier divisor. Assume that D is f -nef and
D − (KX + B) is f -nef and f -big. Then there exists a projective morphism
g : Z → S from a normal algebraic variety, a projective surjective morphism
h : X → Z with connected geometric fibers such that f = g ◦ h, and a g-ample
R-Cartier divisor H on Z such that h∗H ∼R D.

Proof We may assume that S is affine. Indeed, since the factorizations X →
Z → S over affine open subsets S are uniquely determined by D, they glue
together. We may assume that D is not f -ample. Since D − (KX + B) is f -big,
we may write D− (KX + B) = A+ E for some f -ample R-Cartier divisor A and
some effective R-Cartier divisor E. Since D − (KX + B) is also f -nef, for any
sufficiently small positive real number ϵ, L = D − (KX + B) − ϵE is f -ample.

By taking ϵ sufficiently small, we may assume that (X, B + ϵE) is KLT. We
can apply Theorem 2.4.10(4) to this pair. Since D is not f -ample, KX+B+ϵE =
D − L is not f -nef. Therefore, for a sufficiently small δ > 0, KX + B + ϵE + δL
is not f -nef. Consider

t0 = min{t | KX + B + ϵE + δL + tL is f -nef},

then t0 = 1 − δ and KX + B + ϵE + δL + t0L = D. Then the conclusion follows
from Theorem 2.4.10(4). □

As a corollary of the above corollary, we can show the existence of canonical
models when the boundary is big:

Corollary 2.4.13 Let (X, B) be a KLT pair and let f : X → S be a projective
morphism. Assume that KX + B is f -nef and B is an f -big R-Cartier divisor.
Then there exists a projective morphism g : Z → S from a normal algebraic
variety, a projective surjective morphism h : X → Z with connected geometric
fibers such that f = g ◦ h, and a g-ample R-Cartier divisor H on Z such that
h∗H ∼R KX + B.

Proof We may assume that S is affine. Take D = KX + B. Then D is f -nef.
As B is f -big, we may write B = A + E for some f -ample R-Cartier divisor
A and some effective R-Cartier divisor E. Take a sufficiently small ϵ > 0 such
that (X, (1− ϵ)B+ ϵE) is KLT. Then, D− (KX + (1− ϵ)B+ ϵE) = ϵA is f -ample,
and we can apply Corollary 2.4.12. □
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2.5 Types of contraction morphisms and the minimal model
program

The MMP is an operation to simplify a given pair consisting of a variety and a
boundary divisor by applying birational maps repeatedly. The pair we consider
is assumed to be KLT or DLT, and the variety is assumed to be Q-factorial and
projective over the base variety. This condition is preserved under the operation
of the MMP.

Such an operation in the MMP is constructed by the contraction morphism
associated to an extremal ray. There are three types of contraction morphisms:
divisorial contractions, small contractions, and Mori fiber spaces.

The goal of the MMP is to obtain either a minimal model (a pair with rel-
atively nef log canonical divisor) or another different class called a Mori fiber
space.

2.5.1 Classification of contraction morphisms

First, consider the case that the contraction morphism associated to an extremal
ray is a birational morphism contracting a divisor:

Theorem 2.5.1 Let (X, B) be a DLT pair and let f : X → S be a projective
morphism. Assume that X is Q-factorial. Let R be an extremal ray of NE(X/S )
such that KX + B takes negative values on R \ {0} and take h : X → Y to be the
contraction morphism associated to R. Assume that h is a birational morphism
and its exceptional set contains a prime divisor. Then the following assertions
hold:

(1) −(KX + B) is h-ample.
(2) ρ(X/Y) = 1 and ρ(X/S ) = ρ(Y/S ) + 1.
(3) The exceptional set of h is a prime divisor, say E.
(4) Y is Q-factorial.
(5) We can write KX + B = h∗(KY + BY ) + eE, e > 0. Here BY = h∗B.
(6) (Y, BY ) is DLT. Moreover, if (X, B) is KLT, then (Y, BY ) is KLT.

Proof (1), (2) follow directly from the contraction theorem.
(3) Let E be a prime divisor contained in the exceptional set of h. Since X

is Q-factorial, E is Q-Cartier. Since E is exceptional, by Lemma 1.6.3, there
exists a curve C contracted by h such that (E ·C) < 0.

Since C is an h-relative curve and ρ(X/Y) = 1, −E is h-ample. Suppose that
E does not coincide with the exceptional set of h, then there exists a relative
curve C′ not contained in E. This implies that (E · C′) ≥ 0, a contradiction.
Therefore, the exceptional set of h is a prime divisor.
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(4) Take any prime divisor F of Y . Since X is Q-factorial and ρ(X/Y) = 1,
there exists a rational number r such that h−1

∗ F + rE ≡ 0 over Y . There exists a
positive integer p such that p(h−1

∗ F + rE) is a Cartier divisor.
By the contraction theorem (Theorem 2.4.1), there exists a Cartier divisor

F′ on Y such that p(h−1
∗ F + rE) ∼ h∗F′. Since h is birational, pF ∼ F′, which

means that F is Q-Cartier.
(5) Write KX + B = h∗(KY + BY )+ eE. Since −(KX + B) and −E are h-ample,

we know that e > 0.
(6) follows from (5). □

Let (X, B) be a Q-factorial DLT pair and let f : X → S be a projective
morphism. If KX+B is relatively nef, then f : (X, B)→ S is already minimal. If
not, then by the cone theorem, there exists an extremal ray R in NE(X/S ) such
that KX+B takes negative values on R\{0}. Take h : X → Y to be the contraction
morphism associated to R. By Theorem 2.5.1, we have the following three
cases:

(1) Divisorial contraction: h is birational and the exceptional set is a prime
divisor.

(2) Small contraction: h is birational and the exceptional set is of codimension
at least 2.

(3) Mori fiber space: dim Y < dim X.

For a divisorial contraction, the new pair (Y, BY ) has the same property as
(X, B). If KY + BY is not relatively nef, that is, it is not a minimal model,
then we can continue to consider contraction morphisms. Moreover, since
ρ(Y/S ) = ρ(X/S ) − 1, there cannot be infinitely many divisorial contractions
in this procedure. So we may expect to get a minimal model by induction on
the Picard number ρ(X/S ).

For example, for a pair where X is a smooth surface and B = 0, a divisorial
contraction is the contraction of a (−1)-curve (see Example 2.4.7). Then after
finitely many divisorial contractions, there is no (−1)-curve, and we reach a
minimal model in the classical sense. This model is either a minimal model in
the sense of this book, or admits a further contraction morphism. By dimension
reason, this contraction morphism is not small, hence is a Mori fiber space, that
is, a ruled surface or P2.

However, this is not the case in higher dimensions due to the existence of
small contractions. In dimension 3, small contractions appear only if X is sin-
gular or B , 0 (see Example 2.4.9). In dimensions 4 and higher, small contrac-
tions can appear even if X is smooth and B = 0 (see [62]).

Although Mori fiber spaces are not birational, it is interesting to be able to
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handle them in the same category of contraction morphisms. For example, in
the situation of algebraic surfaces, they can be constructed from ruled surfaces
or the morphism from P2 to a point. A Mori fiber space is also called a Fano
fibration.

In general, an algebraic variety X is called a uniruled variety if it is covered
by a family of rational curves. In other words, this condition means that there
exists an algebraic variety Z with dim Z = dim X − 1 and a dominant ratio-
nal map Z × P1 99K X. Uniruledness is a property invariant under birational
equivalence.

As later discussed by the lengths of extremal rays (Section 2.8), each irre-
ducible component of any fiber of a contraction morphism is always uniruled,
unless it is a point. One image of the MMP is that “if you contract redundant
rational curves by contraction morphisms, then you will get a minimal model”.
In particular, an algebraic variety with a Mori fiber space structure is a unir-
uled variety. Moreover, Hacon and McKernan showed further that the fibers of
contraction morphisms are always rationally connected ([37]).

For Mori fiber spaces we have the following result:

Proposition 2.5.2 Let h : X → Y be a Mori fiber space. Then Y is Q-
factorial.

Proof We may assume that dim Y > 0. Take any prime divisor E on Y and
take a prime divisor D on X such that h(D) = E. Since X is Q-factorial, there
exists a positive integer d such that dD is Cartier. Since ρ(X/Y) = 1 and there
exists a curve C contained in a fiber of h such that D ∩ C = ∅, we get D ≡Y 0.
Applying the basepoint-free theorem to h, there exists a Cartier divisor E′ on Y
and a rational function g on X such that dD = h∗E′ + div(g). Since div(g) does
not intersect the generic fiber of h, there exists a rational function g′ on Y such
that g = h∗(g′). So there exists a positive integer e such that eE = E′ + div(g′),
and hence E is Q-Cartier. □

2.5.2 Flips

The existence of small contractions is a phenomenon appearing only in dimen-
sions 3 and higher, which is completely different from the situation of dimen-
sion 2. If X → Y is a small contraction and we consider the pair (Y, h∗B), then
we are in trouble because KY + h∗B is not R-Cartier. Indeed, if KY + h∗B is R-
Cartier, then we can consider its pullback by h. Since X and Y are isomorphic
in codimension 1, we must have h∗(KY + h∗B) = KX + B. On the other hand,
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take any curve C contracted by h, then ((KX + B) · C) < 0, which contradicts
the projection formula (before Proposition 1.4.3).

By this reason, we need to construct a new pair by an operation called a
flip. The new pair obtained by a flip has the same properties as the original
pair. Flips and divisorial contractions are completely different operations in
geometry, but they are very similar in the point view of numerical geometry.

Definition 2.5.3 Let (X, B) be a Q-factorial DLT pair and let f : X → S be a
projective morphism. Assume that g : X → Y is a small contraction morphism
associated to a (KX + B)-negative extremal ray. Then another birational projec-
tive morphism g+ : X+ → Y is called the flip of g if the following conditions
are satisfied:

(1) g+ is isomorphic in codimension 1, that is, the exceptional set of g+ does
not contain any prime divisor.

(2) KX+ + B+ is g+-ample, here B+ is the strict transform of B.

Here note that the positivity of log canonical divisors KX + B and KX+ + B+ are
reversed. The birational transform (g+)−1 ◦ g is also called a flip.

When considering the existence of the flip of a small contraction, as ample-
ness is an open condition, it suffices to consider the case that B is a Q-divisor
without loss of generality. Indeed, the ampleness of −(KX +B) and KX+ +B+ is
not changed after perturbing B slightly. Similarly, it suffices to consider KLT
pairs instead of DLT pairs.

Example 2.5.4 Let us give examples of flips. Both examples are flips of toric
varieties ([120]).

(1) Let us consider the example by Francia ([25]). Here dim X = 3, B = 0,
and X is singular. We denote X = X−. Originally, this example intended
to claim that “the minimal model theory is impossible in dimensions 3
and higher”, but later it was included into the development of the minimal
model theory, and become the simplest example of flips (see Figure 2.1).

Consider the locally free sheaf F = OP1 (−1) ⊕ OP1 (−2) of rank 2 over
C+ = P1, take X+ to be the total space of the corresponding vector bundle,
that is,

X+ = SpecC+ (
∞⊕

m=0

SymmF∗).

X+ is a smooth 3-dimensional algebraic variety which contains C+ as the 0-
section, and the cotangent bundle NC+/X+ is isomorphic to F. Hence (KX+ ·
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E2

E1

⊂ Y

C−1

Y−1 ⊃ E−1

C+1
E+1 ⊂ Y+1

QX− ⊃ C− C+ ⊂ X+

P ∈ S

g−2 g+2

g−1

g+1

f− f+

Figure 2.1 An example of flips.

C+) = 1. Set

S = Spec H0(X+,OX+ ) = Spec(
∞⊕

m=0

H0(C+,SymmF∗)),

then there is a natural birational morphism f + : X+ → S . The exceptional
set of f + coincides with the 0-section C+, and f +(C+) = P is a point.
Hence KX+ is f +-ample.

Take g+1 : Y+1 → X+ to be the blowup of X+ along C+. The exceptional
set E+1 of g+1 is isomorphic to the ruled surface P(F∗). Take l+1 to be a
fiber of g+1 |E+1 and C+1 the curve with negative intersection on E+1 . Note that
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C+1 is a section of g+1 |E+1 . The cotangent bundle NC+1 /Y
+
1

is isomorphic to
OP1 (−1)⊕2.

Take g+2 : Y → Y+1 to be the blowup of Y+1 along C+1 . The exceptional set
E2 of g+2 is isomorphic to the product P1 ×P1. Take l+2 to be a fiber of g+2 |E2

and l−2 the fiber of the other projection of E2. On Y+1 and Y , g+1 and g+2 are
divisorial contractions. Denote l1 = (g+2 )−1

∗ l+1 .

Since dim N1(Y/S ) = 3, we have

NE(Y/S ) = ⟨l1, l+2 , l
−
2 ⟩.

Here the symbol ⟨ ⟩ means the convex cone generated by the elements
within there. We have (KY · l1) = 0 and (KY · l+2 ) = (KY · l−2 ) = −1. Take
R+2 ,R

−
2 to be the extremal rays generated by l+2 , l

−
2 . The contraction mor-

phism associated to R+2 is just g+2 . The contraction morphism g−2 : Y → Y−1
associated to R−2 contracts the exceptional divisor E2 of g+2 in the other
direction.

Take E1 = (g+2 )−1
∗ E+1 . Since ((KY + E1) · l1) = −2, if we consider the

pair (Y, E1), then l1 also generates an extremal ray, so the corresponding
contraction morphism exists and is a divisorial contraction contracting E1.
But we do not consider this contraction morphism here.

E−1 = (g−2 )∗E1 is isomorphic to P2 and l−1 = (g−2 )∗l1 is a line. As dim N1(Y−1 /S ) =
2, NE(Y−1 /S ) is generated by l−1 and C−1 = (g−2 )∗l+2 . Here (KY−1 · l

−
1 ) = −1 and

(KY · C−1 ) = 0. Take R−1 to be the extremal ray generated by l−1 , the corre-
sponding contraction morphism g−1 : Y−1 → X− contracts E−1 to a singular
point Q on X−. As OE−1 (E−1 ) � OP2 (−2), the singular point Q is a cyclic
quotient singularity of type 1

2 (1, 1, 1).

Take C− = (g−1 )∗C−1 , then NE(X−/S ) is generated by C−. We have (KX− ·

C−) = −1/2. Here it might seem strange that the intersection number is a
fractional, but this is because KX− is not Cartier. In fact, C− passes through
the singular point Q and 2KX− becomes Cartier near Q.

−KX− is f −-ample and the morphism f − : X− → S is a small contrac-
tion. The morphism f + : X+ → S is just the flip of f −.

(2) There are examples of flips from smooth algebraic varieties in general di-
mensions.

Consider the locally free sheaf F = OE(−1)⊕(t+1) of rank t + 1 over the
projective space E = Ps and take its total space X = SpecE(

⊕∞

m=0 SymmF∗).
X is a smooth (s + t + 1)-dimensional algebraic variety which contains E
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as the 0-section, and the cotangent bundle NE/X is isomorphic to F. Set

S = Spec H0(X,OX) = Spec(
∞⊕

m=0

H0(E,SymmF∗)),

then there is a natural birational morphism f : X → S . The exceptional set
of f coincides with the 0-section E of F. View a line C on E as a curve on
X, we have (KX ·C) = t − s and f is a small contraction if s > t.

Take homogeneous coordinates x0, . . . , xs on E and coordinates y0, . . . , yt

along the direction of fibers of F, then
∞⊕

m=0

H0(E,SymmF∗) � k[xiy j]0≤i≤s,0≤ j≤t

is symmetric with respect to xi, y j, so we can make another construction as
follows.

Consider the locally free sheaf F+ = OE+ (−1)⊕(s+1) of rank s + 1 over
E+ = Pt and take its total space X+ = SpecE+ (

⊕∞

m=0 Symm(F+)∗). Then
there is an isomorphism

S � Spec H0(X+,OX+ ) = Spec(
∞⊕

m=0

H0(E+,Symm(F+)∗))

and a natural birational morphism f + : X+ → S . The exceptional set of f +

coincides with the 0-section E+ of F+. View a line C+ on E+ as a curve on
X+, we have (KX+ ·C+) = s − t. If s > t, then f + is the flip of f .

Also, if s = t, then KX = f ∗KS and KX+ = ( f +)∗KS , which is an example
of a birational transform so-called a flop. In particular, if s = t = 1, then S
is the same as in Example 1.1.4(2), and this flop is called Atiyah’s flop.

The pair obtained by a flip admits the same property as the original one:

Theorem 2.5.5 Let (X, B) be a Q-factorial DLT pair and let f : X → S
be a projective morphism. Let R be an extremal ray of NE(X/S ) such that
KX+B takes negative values on R\{0}. Suppose that the contraction morphism
g : X → Y associated to R is small and the flip g+ : X+ → Y of g exists. Then
X+ is Q-factorial, (X+, B+) is DLT, and ρ(X/S ) = ρ(X+/S ).

Proof Take any prime divisor E+ on X+ and denote by E the strict transform
of E+ on X. Since X is Q-factorial, E is a Q-Cartier divisor. Since ρ(X/Y) = 1,
there exists a real number r such that E + r(KX + B) ≡Y 0. As g is a birational
morphism, by the basepoint-free theorem, E0 = g∗(E + r(KX + B)) is R-Cartier
and g∗E0 = E + r(KX + B). Since KX+ + B+ is R-Cartier, E+ = (g+)∗E0 −

r(KX+ + B+) is R-Cartier. Therefore, X+ is Q-factorial. Then it is easy to see
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that ρ(X/S ) = ρ(X+/S ). The fact that (X+, B+) is DLT can be concluded from
the next Theorem 2.5.6. □

2.5.3 Decrease of canonical divisors

Although flips and divisorial contractions look very different, the following
theorem shows that they are similar in the sense that both are operations that
make canonical divisors smaller.

Theorem 2.5.6 ([76, Proposition 5.1.11]) Let (X, B) be a Q-factorial DLT
pair and let f : X → S be a projective morphism. Let R be an extremal ray of
NE(X/S ) such that KX + B takes negative values on R \ {0}, take h : X → Y to
be the associated contraction morphism. Consider the following two cases:

(1) h : X → Y is a divisorial contraction.
(2) h : X → Y is a small contraction with flip h+ : X+ → Y.

In each case, take a normal algebraic variety Z with birational projective mor-
phisms as the following: in case (1) take g : Z → X; in case (2) take g : Z → X
and g+ : Z → X+ such that h ◦ g = h+ ◦ g+. For each case, R-divisors C,C′ on
Z can be determined as the following:

(1) g∗(KX + B) = KZ +C and (h ◦ g)∗(KY + h∗B) = KZ +C′.
(2) g∗(KX + B) = KZ +C and (g+)∗(KX+ + B+) = KZ +C′.

Then we have C ≥ C′. Moreover, the support of C − C′ coincides with the
inverse image g−1(Exc(h)) of the exceptional set of h.

Proof In case (1), take E to be the exceptional divisor of h, then we can write
KX + B − h∗(KY + h∗B) = eE with e > 0. The assertion of the theorem is clear.

Let us consider case (2). Since KX+ +B+ is h+-ample and ρ(X+/Y) = 1, there
exists an h+-ample Cartier divisor D+ and a positive real number d such that
KX+ +B+ ≡Y dD+. Take D to be the strict transform of D+ on X. Then C−C′ =
d(g∗D − (g+)∗D+). Here note that this is not only a numerical equivalence but
indeed an equality because the differences are supported on the exceptional
locus (cf. Lemma 1.6.3).

We may replace Y by an affine open subset intersecting h(Exc(h)). In this
case, since D+ is ample, there exists a sufficiently large integer m such that
|mD+| is free. On the other hand, D is negative along the fibers of h|Exc(h), hence
the base locus of |mD| coincides with Exc(h). Since X and X+ are isomorphic
in codimension 1, there is a 1–1 correspondence between elements in linear
systems. Therefore, m(g∗D − (g+)∗D+) is the fixed part of the linear system
|mg∗D|, and its support coincides with g−1(Exc(h)). □
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2.5.4 The existence and the termination of flips

The existence of flips can be reduced to a special case of the finite generation
of canonical rings:

Theorem 2.5.7 Let (X, B) be a Q-factorial DLT pair where B is a Q-divisor
and let f : X → Y be a small contraction. Then the following conditions are
equivalent:

(1) The flip f + : X+ → Y exists.
(2) The graded OY -algebra

R(X/Y,KX + B) =
∞⊕

m=0

f∗(OX(⌞m(KX + B)⌟))

is finitely generated.

Moreover, there is an isomorphism

X+ � ProjYR(X/Y,KX + B).

In particular, the flip is unique if it exists.

Proof Assume (1). Since X and X+ are isomorphic in codimension 1, we have

R(X/Y,KX + B) �
∞⊕

m=0

f +∗ (OX+ (⌞m(KX+ + B+)⌟)).

Since KX+ + B+ is a relatively ample Q-divisor, R(X/Y,KX + B) is finitely gen-
erated and

X+ � ProjYR(X/Y,KX + B).

Moreover, the latter part of the assertion of the theorem follows.
Assume (2). Take X+ = ProjYR(X/Y,KX + B) and the natural projection

f + : X+ → Y . By construction, there exists a positive integer r and a relatively
ample divisor H on X+ such that

f +∗ (OX+ (mH)) � f∗(OX(mr(KX + B)))

for any positive integer m. Since f is isomorphic in codimension 1, f +∗ (OX+ (mH))
is a reflexive sheaf on Y .

We will show that f + is isomorphic in codimension 1. Assume that f + con-
tracts a prime divisor E, consider the coherent sheaf F supported on E satisfy-
ing the following exact sequence

0→ OX+ (mH)→ OX+ (mH + E)→ F(mH)→ 0.

Here E is not assumed to be Q-Cartier. Since H is relatively ample, we can
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take m sufficiently large such that R1 f +∗ (OX+ (mH)) = 0 and f +∗ (F(mH)) , 0.
However, as f +(E) is of codimension at least 2 and f +∗ (OX+ (mH)) is reflexive,
f +∗ OX+ (mH)→ f +∗ OX+ (mH + E) is an isomorphism. This is a contradiction, so
there is no such prime divisor E.

So f + is isomorphic in codimension 1. By construction, KX+ + B+ is f +-
ample and therefore f + is the flip. □

The following theorem is called the conjecture on existence of flips before
it was finally proved by Hacon and McKernan ([36]).

Theorem 2.5.8 (Existence of flips) Let (X, B) be a Q-factorial DLT pair and
let f : X → S be a projective morphism. Assume that g : X → Y is a small
contraction morphism associated to a (KX + B)-negative extremal ray R. Then
the flip g+ : X+ → Y always exists.

The proof will be in Chapter 3. This theorem is a special case of the finite
generation theorem of canonical rings, but it is also an essential part in the
proof of the latter theorem.

Divisorial contractions decrease Picard numbers by 1, but in contrast, flips
preserve Picard numbers. Therefore, to make the MMP work, we need the
following conjecture on termination of flips.

Conjecture 2.5.9 (Termination of flips) Let (X, B) be a Q-factorial DLT pair
and let f : X → S be a projective morphism. Then there does not exist any
infinite sequence of flips:

(X, B) = (X0, B0) 99K (X1, B1) 99K · · ·

99K (Xn, Bn) 99K (Xn+1, Bn+1) 99K · · · .

Here αn : (Xn, Bn) 99K (Xn+1, Bn+1) is a flip over S and Bn is the strict trans-
form of B.

Since Xn are all isomorphic in codimension 1, their spaces of divisors can
be viewed as the same. Note that Bn are constant under this identification.

2.5.5 Minimal models and canonical models

In Section 1.12, we defined when a morphism f : X → S or f : (X, B) → S
is said to be minimal. In this subsection, for a morphism f : X → S or f :
(X, B)→ S , we define its minimal model and canonical model:

Definition 2.5.10 (1) Let X be a normal algebraic variety with Q-factorial
terminal singularities and let f : X → S be a projective morphism. An-
other normal algebraic variety X′ with Q-factorial terminal singularities
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with a projective morphism f ′ : X′ → S such that there exists a birational
map α : X 99K X′ with f = f ′ ◦ α is called a minimal model of f : X → S
if the following conditions are satisfied. Sometimes it is also called a ter-
minal model, or more accurately, a Q-factorial terminal minimal model.

(a) α is surjective in codimension 1. That is, any prime divisor on X′ is
the strict transform of a prime divisor on X.

(b) If we take a normal algebraic variety Z with birational projective mor-
phisms g : Z → X and g′ : Z → X′ such that g′ = α ◦ g, then
the difference g∗KX − (g′)∗KX′ is effective, and its support contains all
g−1
∗ E, where E is a prime divisor contracted by α.

(c) KX′ is relatively nef.

A normal algebraic variety Y with a projective morphism f ′′ : Y → S
and a projective morphism h : X′ → Y such that f ′ = f ′′ ◦ h is called
a canonical model or an ample model of f : X → S if the following
conditions are satisfied.

(d) h is surjective with connected geometric fibers.
(e) There exists an f ′′-ample R-divisor H such that h∗H = KX′ .

(2) Let (X, B) be a Q-factorial DLT pair and let f : X → S be a projective mor-
phism. Another Q-factorial DLT pair (X′, B′) with a projective morphism
f ′ : X′ → S such that there exists a birational map α : X 99K X′ with
f = f ′ ◦ α is called a minimal model of f : (X, B) → S if the following
conditions are satisfied. Sometimes it is also called a log minimal model,
or more accurately, a Q-factorial DLT minimal model.

(a) α is surjective in codimension 1 and B′ = α∗B.
(b) If we take a normal algebraic variety Z with birational projective mor-

phisms g : Z → X and g′ : Z → X′ such that g′ = α ◦ g, then the
difference g∗(KX + B) − (g′)∗(KX′ + B′) is effective, and its support
contains all g−1

∗ E, where E is a prime divisor contracted by α.
(c) KX′ + B′ is relatively nef.

A normal algebraic variety Y with a projective morphism f ′′ : Y →
S and a projective morphism h : X′ → Y such that f ′ = f ′′ ◦ h is
called a canonical model, a log canonical model, or an ample model of
f : (X, B)→ S if the following conditions are satisfied.

(d) h is surjective with connected geometric fibers.
(e) There exists an f ′′-ample R-divisor H such that h∗H = KX′ + B′.
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Remark 2.5.11 (1) A minimal model defined as above is (log) minimal in
the sense of Definition 1.12.1, so Proposition 1.12.2 can be applied. In-
deed, there is no such C j in condition (b) of Proposition 1.12.2 by the
assumption “sujective in codimension 1”.

(2) By condition (a), prime divisors contracted by g are also contracted by g′.
Hence the support of g∗(KX + B) − (g′)∗(KX′ + B′) is contracted by g′.

(3) Condition (b) says that there is a reason for a prime divisor contracted by
α to be contracted.

(4) The minimal model and canonical model defined in the former part of the
definition are special cases of the log version defined in the latter part.
Indeed, if B = 0 and X is terminal in the given pair (X, B), then Y is also
terminal by condition (b). Therefore, when considering the existence of
minimal models, it suffices to consider the log version. In this book, we
will consider the log version in general, and usually the word “log” will be
omitted.

For a given morphism f : (X, B) → S , its minimal model is not necessarily
unique. But its canonical model can be proved to be unique if exists:

Theorem 2.5.12 Let (X, B) be a Q-factorial DLT pair and let f : X → S be
a projective morphism. For i = 1, 2, assume that there exist minimal models
f ′i : (X′i , B

′
i) → S with birational maps αi : X 99K X′i , and canonical models

f ′′i : Yi → S with projective morphisms hi : X′i → Yi. Then the following
assertions hold:

(1) The induced birational map β : X′1 99K X′2 is isomorphic in codimension 1
and (X′i , B

′
i) (i = 1, 2) are K-equivalent to each other.

(2) There exists an isomorphism e : Y1 → Y2 such that f ′′1 = f ′′2 ◦ e.

Proof (1) We can take a smooth algebraic variety Z with a birational projec-
tive morphism g : Z → X such that gi = αi ◦ g is a birational morphism for
i = 1, 2. Denote g∗1(KX′1 +B′1)−g∗2(KX′2 +B′2) = E. Assume, to the contrary, that
E , 0. Write E = E+ − E− into parts with positive and negative coefficients.
By symmetry, we may assume that E+ , 0.

Since g∗(KX + B) ≥ g∗1(KX′1 + B′1) = g∗2(KX′2 + B′2) + E, every irreducible
component of E+ is contracted by g2. By the negativity lemma (Lemma 1.6.3),
there exists a curve C contracted by g2 such that (E+ ·C) < 0 and (E− ·C) ≥ 0.
Hence (g∗1(KX′1 + B′1) · C) = (g∗2(KX′2 + B′2) · C) + (E · C) < 0. This contradicts
the fact that KX′1 + B′1 is relatively nef. This shows the equality.

By this equality, we know that the set of divisors contracted by αi is inde-
pendent of i, which implies that β is isomorphic in codimension 1.

(2) For each i = 1, 2, there exists an f ′′i -ample R-divisor Hi such that h∗i Hi =
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KX′i + B′i . Hence a curve C on Z is contracted by hi ◦ gi : Z → Yi if and
only if (g∗i h∗i Hi · C) = 0. Since g∗1(KX′1 + B′1) = g∗2(KX′2 + B′2), this condition is
independent of i. Hence we get the conclusion by Zariski’s main theorem. □

Example 2.5.13 Consider X0 to be the hypersurface defined by the equation
x1x2 + x3x4 = 0 in the projective space P4 with homogeneous coordinates
x0, . . . , x4. X0 is the projective cone over P1 × P1 with vertex P = [1 : 0 : 0 :
0 : 0], and P ∈ X0 is a terminal singularity. Take B̄ to be a general hypersurface
not passing P and B0 = B̄ ∩ X0. Assume that the degree d = deg(B̄) is at least
3, then KX0 + B0 = OX0 (d − 3) is nef.

Blowing up the ideal (x1, x3) or (x1, x4) on X0, we get two small resolutions
gi : Xi → X0 (i = 1, 2). gi is isomorphic outside P and g−1

i (P) is isomorphic to
P1. Take Bi to be the strict transform of B0 on Xi.

Then (Xi, Bi) is a minimal model of (X0, B0). The induced birational map
α : X1 99K X2 is the Atiyah flop (see Example 2.5.4(2)).

If one would like to have an example without boundaries Bi, suppose that
d ≥ 4, then one can consider the cyclic covering π0 : X′0 → X0 of degree d
ramified along B0, and do a similar construction. Here if B0 is defined by the
equation f (x) = 0, then the covering map π0 is given by td = f (x). In this case,
KX′0 = π

∗
0(KX0 + (d − 1)B0/d) and KX′0 is nef.

2.5.6 The minimal model program

We introduce the formal definition of the MMP. Starting from an arbitrary Q-
factorial DLT pair (X, B) and a projective morphism f : X → S , in order to get
a minimal model or a Mori fiber space, we have the following MMP which is
a process consists of a sequence of birational operations.

(1) Given a Q-factorial DLT pair (X, B) and a projective morphism f : X → S .
(2) If KX + B is relatively nef, then (X, B) is minimal and the MMP ends here.
(3) If KX + B is not relatively nef, then there exists a contraction morphism

h : X → Y associated to an extremal ray.

(a) If h is a divisorial contraction, then (Y, BY ) is again a Q-factorial DLT
pair. Here BY = h∗B. The Picard number drops by 1: ρ(Y/S ) = ρ(X/S )−
1. Replace (X, B) by the new pair (Y, BY ) and go back to (1).

(b) If h is a small contraction, then take the flip h+ : X+ → Y and (X+, B+)
is again a Q-factorial DLT pair. Here B+ is the strict transform of B.
The Picard number is not changed: ρ(X+/S ) = ρ(X/S ). Replace (X, B)
by the new pair (X+, B+) and go back to (1).

(c) If h is a Mori fiber space, then the MMP ends here.
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The MMP is to repeat this operation. If the termination of flips is true, then
the operations in (3b) stop after finitely many times, and eventually we get into
case (2) or (3c).

Example 2.5.14 Let (X, B) be a Q-factorial DLT pair and let f : X → S be a
projective morphism. Let us consider the case ρ(X/S ) = 2. The corresponding
MMP is called a 2-ray game. We explain as follows.

The closed cone of curves NE(X/S ) must be a fan generated by two extremal
rays R1,R2 in N1(X/S ). If KX+B is not nef over S , then for at least one extremal
ray, say R1, ((KX + B) · R1) < 0.

Assume that the corresponding contraction morphism ϕ : (X, B) → Y is
small and ϕ′ : (X′, B′) → Y is the flip. Then again we have ρ(X′/S ) = 2 and
NE(X′/S ) is a fan generated by two extremal rays R′1,R

′
2. Suppose that R′2 is

the extremal ray generated by curves contracted by ϕ′, then by the property of
flips, ((KX′+B′) ·R′2) > 0. If KX′+B′ is not nef over S , then ((KX′+B′) ·R′1) < 0.
Therefore, the choice of the extremal ray is unique, and the same operation can
be repeated in a single direction.

The 2-ray game can be easily understood using the spaces of divisors. The
nef cone Amp(X/S ) must be a fan generated by two extremal rays L1, L2 in
N1(X/S ). Take L1 to be the extremal ray corresponding to ϕ, that is, (L1 ·R1) =
0.

As the induced map X 99K X′ by the flip is isomorphic in codimension 1, we
can identify N1(X/S ) � N1(X′/S ). Then after the flip, the nef cone Amp(X′/S )
is a fan generated by two extremal rays L′1, L

′
2 in N1(X/S ), one of them, say L′2,

is just L1. This is because they both coincide with the pullback of Amp(Y/S ).
Therefore, we can view this flip as moving from one room Amp(X/S ) to an-

other room Amp(X′/S ). The next contraction corresponds to the wall L′1 on the
other side. This is similar to the MMP with scaling introduced in Section 2.6.

Remark 2.5.15 In the formulation of the MMP, we can make similar argu-
ments by just assuming that the pairs are KLT instead of DLT. Indeed, as X is
assumed to be Q-factorial, if (X, B) is KLT, then for ϵ ∈ (0, 1), (X, (1 − ϵ)B) is
KLT. If KX + B is not nef, then KX + (1 − ϵ)B is not nef for a sufficiently small
ϵ.

2.6 Minimal model program with scaling

In each step of the MMP, when there is more than one extremal ray, we just
choose one of them. The way to choose is arbitrary. The so-called MMP with
scaling or directed MMP proceeds by choosing the extremal ray in an efficient
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way. The MMP with scaling goes toward the minimal model straight in one
direction. In this way, the termination of flips is easier to control. Except for
lower dimensional cases, to prove the termination of flips is an extremely hard
problem, but it is sightly hopeful if we only consider the termination for the
MMP with scaling.

Originally the MMP uses convex geometry, but the MMP with scaling is
particularly compatible with convex geometry. The idea of such an MMP was
first seen in [122], and then was much further developed to become a basic
tool in [16]. As for the termination of flips, it might not be true for the general
MMP, but it is expected to be true for the MMP with scaling.

To begin with, let (X, B) be a Q-factorial KLT pair and let f : X → S
be a projective morphism, a scale is an R-divisor H satisfying the following
properties:

(1) (X, B + H) is KLT.
(2) KX + B + H is relatively nef.

The idea is to use H to control the progress of MMP. Starting from (X, B) =
(X0, B0), we construct the MMP for (X, B) with scaling of H such that in the
nth step we have a Q-factorial KLT pair (Xn, Bn) satisfying the following prop-
erties:

(1) (Xn, Bn + tn−1Hn) is KLT.
(2) KXn + Bn + tn−1Hn is relatively nef.

Here Hn the strict transform of H, and tn is defined as the following threshold:

tn = min{t ≥ 0 | KXn + Bn + tHn is relatively nef}.

We set t−1 = 1. When n = 0, by assumption, t0 ≤ 1. Assume that KX + B is not
relatively nef, then t0 > 0. When n > 0, by construction, KXn + Bn + tn−1Hn is
relatively nef, and hence tn ≤ tn−1.

The inductive construction of this MMP is as follows. Take n ≥ 0. Assume
that we already have (Xn, Bn). If tn = 0, then KXn + Bn is relatively nef and the
MMP ends. If tn > 0, then we proceed to the next step by the following lemma.
We treat in this section the case where (X, B+H) is KLT and B+H is relatively
big. We will consider the general case in Section 2.10 after further preparation.

Lemma 2.6.1 Suppose that (X, B + H) is KLT and B + H is relatively big. If
tn > 0, then there exists a (KXn + Bn)-negative extremal ray Rn such that

((KXn + Bn + tnHn) · Rn) = 0.
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Proof Since Bn + tnHn is relatively big, for a sufficiently small positive real
number ϵ, (Xn, Bn + (tn − ϵ)Hn) is KLT and there are only finitely many (KXn +

Bn+ (tn−ϵ)Hn)-negative extremal rays (Corollary 2.4.5). Since KXn +Bn+ tnHn

is relatively nef, for 0 < ϵ′ < ϵ, a (KXn +Bn+ (tn− ϵ′)Hn)-negative extremal ray
is also a (KXn + Bn + (tn − ϵ)Hn)-negative extremal ray. So among them there
exists an extremal ray realizing the threshold tn. Note that this extremal ray is
also a (KXn + Bn)-negative extremal ray. □

We can use the extremal ray Rn in the above lemma to proceed the MMP.
Since KXn+Bn+tnHn is relatively nef and numerically trivial along this extremal
ray, the strict transform KXn+1 + Bn+1 + tnHn+1 is relatively nef. Also note that
(Xn, Bn + tnHn) is KLT, which implies that (Xn+1, Bn+1 + tnHn+1) is KLT. In this
way, we inductively constructed the MMP with scaling of H. Note that we get
a nonincreasing sequence 1 ≥ t0 ≥ t1 ≥ · · · .

The MMP with scaling can be visualized as the following (Figure 2.2). For
simplicity, let us consider that the MMP consists of flips. In this case, the vector
spaces N1(Xn/S ) can be all identified with N1(X/S ). Under this identification,
the point corresponding to KXn + Bn does not depend on n. Let us track the
changing of nef cones Amp(Xn/S ) in N1(X/S ). By the cone theorem, observed
from KX + B, the surface of the nef cone Amp(Xn/S ) is locally a polyhedron
(here note that the inside is invisible). Choosing an extremal ray corresponds
to choosing a face, and taking the flip means passing through this face and
moving from one room Amp(Xn/S ) to another room Amp(Xn+1/S ). Such an
operation is usually called a wall crossing.

The condition in the beginning is that KX + B + H ∈ Amp(X/S ). Consider
the line L in N1(X/S ) connecting KX + B + H and KX + B. In each step of the
MMP with scaling, we choose a face intersecting L. Note that

KX + B + tnH ∈ Amp(Xn/S ) ∩ Amp(Xn+1/S ) ∩ L

KX + B KX + B + H

Figure 2.2 directed MMP.
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and all rooms line up along L. So such an MMP moves from KX + B + H to
KX + B directly along this line, and the termination is easier to consider.

Remark 2.6.2 Without the assumptions that (X, B + H) is KLT and B + H
is relatively big, we can still consider the MMP with scaling. In this case, the
proof of Lemma 2.6.1 is a little more complicated (by Corollary 2.10.12).

Birkar, Cascini, Hacon, and McKernan showed the termination of flips in
the following special but very important case. The proof will be in Chapter 3.

Theorem 2.6.3 ([16]) Let (X, B) be a Q-factorial KLT pair and let f : X → S
be a projective morphism. Assume that B is relatively big. Then any MMP with
scaling terminates.

As a corollary, we can show the existence of minimal models for varieties
of general type, or oppositely the existence of Mori fiber spaces for varieties
with non-pseudo-effective canonical divisors (see Chapter 3 for details):

Corollary 2.6.4 Let (X, B) be a Q-factorial KLT pair and let f : X → S be
a projective morphism.

(1) Assume that KX + B is not relatively pseudo-effective over S . Then there
exists a Mori fiber space which is a birational model of (X, B).

(2) Assume that KX + B is relatively big over S . Then (X, B) has a minimal
model. Moreover, by the basepoint-free theorem, (X, B) has a canonical
model.

2.7 The existence of rational curves

Given an algebraic variety, whether there exists a rational curve, and how many
rational curves there are if they exist, are very important questions. We will
give a proof of Theorem 2.7.2 which states that there are many rational curves
on algebraic varieties with canonical divisors satisfying certain negativity. For
example, P1 is the only smooth projective curve with negative canonical divisor
(−K is ample).

In order to prove this theorem, we first take the reduction of the given al-
gebraic variety to positive characteristics, and then proceed the discussion by
methods specific in positive characteristics. Applying Frobenius morphisms,
there is a method to get a morphism from P1 by deforming a given morphism
and degenerating it by taking a limit. This method was originally discovered
by Mori ([99]), and so far is the only method to prove the existence of rational
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curves in general situation. The existence of rational curves is also a very im-
portant problem in complex geometry, but this theorem has no analytic proof.
We can say that this is a theorem unique to algebraic geometry which includes
positive characteristics in its coverage.

2.7.1 Deformation of morphisms

First, in order to construct the space of all deformations of a morphism, or the
moduli space of morphisms, we introduce the definition of Hilbert scheme by
Grothendieck ([34]). For details we refer to [85].

Definition 2.7.1 Fix a projective morphism f : X → S between Noetherian
schemes and a relatively ample sheaf H. For a closed subscheme Z of a fiber
Xs = f −1(s) of f , the polynomial

PZ(m) = χ(Z,mH) =
∑
p≥0

dimk(s) Hp(Z,mH)

in integer m is called the Hilbert polynomial of Z. Fixing a polynomial P, there
exists a moduli space for all closed subschemes of fibers of f whose Hilbert
polynomials coincide with P(m). It is a projective scheme g : HilbP(X/S )→ S
over S and is called the Hilbert scheme. Here a moduli space is a scheme
satisfying the following universal property.

There exists a closed subscheme Z in the fiber product X ×S HilbP(X/S ),
which is called the universal family, satisfying the following conditions:

(1) The first projection p1 maps every fiber p−1
2 (t) of the second projection

p2 : Z → HilbP(X/S ) isomorphically to a closed subscheme of Xg(t),
whose Hilbert polynomial is P(m).

(2) For any S -scheme T → S and any closed subscheme ZT of X ×S T such
that the Hilbert polynomial of every fiber of the second projection ZT → T
is P(m), there exists a unique morphism T → HilbP(X/S ) such that the
pullbackZ×HilbP(X/S ) T from the universal familyZ coincides with ZT .

Note that a family with constant Hilbert polynomial is automatically flat. By
taking disjoint union for all polynomials, we denote Hilb(X/S ) =

∐
P HilbP(X/S ).

The moduli space of morphisms is defined to be the moduli space of graphs
of morphisms. Let X → S and Y → S be projective S -schemes such that X
is flat over S , and take G ⊂ Xs × Ys to be the graph of a morphism between
fibers g : Xs → Ys. Fix a relatively ample sheaf H on X ×S Y and take P(m) =
χ(G,mH). Consider the Hilbert scheme HilbP(X ×S Y/S ), and take π : Ḡ →
HilbP(X×S Y/S ) to be the universal family. Then the set of points in HilbP(X×S
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Y/S ), whose fibers in the universal family are graphs of morphisms between
fibers of X and Y , is an open subset. Indeed, a closed subscheme G′ of Xs′ ×Ys′

is the graph of a morphism Xs′ → Ys′ if and only if the first projection p1 :
G′ → Xs′ is an isomorphism, therefore being a graph of a morphism is an open
condition. This open subset is denoted by HomP

S (X,Y) and called the moduli
space of morphisms.

The theory of infinitesimal deformation is very useful when studying the
structure of Hilbert schemes. For example, let us assume that X is a smooth pro-
jective algebraic variety over a field k and Z is a smooth closed subvariety. Then
Z determines a point [Z] ∈ Hilb(X/k) = Hilb(X). Then the Zariski tangent
space THilb(X),[Z] = (m[Z]/m

2
[Z])
∗ of the point [Z] is isomorphic to H0(Z,NZ/X).

Here NZ/X is the cotangent bundle of Z ⊂ X and m[Z] ⊂ OHilb(X),[Z] is the
maximal ideal of the local ring. On the other hand, the obstruction space is
H1(Z,NZ/X). That is, the completion of Hilb(X) along [Z] can be expressed
by h1(Z,NZ/X) equations in the completion of h0(Z,NZ/X)-dimensional affine
space along the origin. Therefore, we have the inequality

dim[Z] Hilb(X) ≥ h0(Z,NZ/X) − h1(Z,NZ/X).

This can be also applied to moduli spaces of morphisms. Consider the defor-
mation of a morphism between smooth projective algebraic varieties g : X →
Y , the cotangent bundle of G is given by NG/X×Y � p∗2TY . Here TY is the tan-
gent bundle of Y and p2 : G → Y is the second projection. Therefore, we have
the inequality

dim[g] Homk(X,Y) ≥ h0(X, g∗TY ) − h1(X, g∗TY ).

2.7.2 The bend-and-break method

Theorem 2.7.2 ([98]) Let X be a normal projective algebraic variety of di-
mension n over an algebraically closed field of arbitrary characteristic. Take
C to be a curve on X which does not pass through any singular point of X, fix
a point P on C and take an ample divisor H on X. Suppose that C is not a ra-
tional curve and the inequality (KX ·C) < 0 holds. Then there exists a rational
curve L on X passing through P satisfying the inequality

(H · L) ≤
2n(H ·C)
(−KX ·C)

.

Here note that C and L might have singularities, and L might pass through
singularities of X.
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Proof First, let us prove the case that the characteristic p of k is positive.
The point of the proof is that by using Frobenius morphisms, we can make
coverings with sufficiently high degrees while keeping the genus of the curve
fixed.

Take the normalization ν : C′ → C and denote by g the genus of C′. By
assumption, g > 0. Take the Frobenius morphism f ′ : C′q → C′ of degree
q = pm which is a power of the characteristic. Here f ′ is the morphism defined
over k by taking qth power of coordinates, which exists only in positive char-
acteristics. The genus of C′q is again g. Take f : C′q → X to be the composition
morphism.

Since (KX · C) < 0, we can take q = pm sufficiently large such that the
following inequality holds:

b = ⌞
q(−KX ·C) − 1

n
⌟ + 1 − g > 0.

Take b distinct points P1, . . . , Pb on C′q, consider the divisor B =
∑b

i=1 Pi. Con-
sider the deformation of the morphism f : C′q → X fixing B. As the deforma-
tion of the morphism f is the deformation of its graph G, by fixing B it means
that the graphs after deformation contain all points (Pi, f (Pi)) for all i. The set
of all such deformations is a closed subscheme Homk(C′q, X; B) in the moduli
space Homk(C′q, X).

We can compute the dimension of Homk(C′q, X; B) by infinitesimal defor-
mation theory. The Zariski tangent space of Homk(C′q, X) at the point [ f ] is
isomorphic to H0(C′q, f ∗TX), and the Zariski tangent space of its closed sub-
scheme Homk(C′q, X; B) is isomorphic to H0(C′q, f ∗TX ⊗ OC′q (−B)). Also the
obstruction space becomes H1(C′q, f ∗TX ⊗ OC′q (−B)) instead of H1(C′q, f ∗TX).
Therefore, the completion of Homk(C′q, X; B) at the point [ f ] can be expressed
by h1(C′q, f ∗TX⊗OC′q (−B)) linear equations in the completion of the h0(C′q, f ∗TX⊗

OC′q (−B))-dimensional affine space at the origin. Hence we get an estimate of
the dimension

dim[ f ] Homk(C′q, X; B) ≥ χ(C′q, f ∗TX ⊗ OC′q (−B))

= degC′q ( f ∗TX ⊗ OC′q (−B)) + n(1 − g)

= q(−KX ·C) − nb + n(1 − g) ≥ 1.

Here the first equality is derived from the Riemann–Roch formula since TX is
a locally free sheaf of rank n.

From the above argument, there exists a nontrivial deformation family F :
C′q × T → X of f fixing B, parametrized by a smooth affine algebraic curve T .
Here T has a basepoint t0 such that F(P, t0) = f (P) for all P ∈ C′q, and also
F(Pi, t) = f (Pi) for all 1 ≤ i ≤ b and all t ∈ T . On the other hand, since g > 0
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and b > 0, the morphism C′q → C has no deformation itself. Therefore, the
image of F is not contained in C, that is, F(C′q × T ) 1 C. We note that the
above argument does not work if g = 0. Indeed there are still deformations of
the morphism f : C′q → C even if b is large, because degC′q ( f ∗TC) becomes
large.

Compactify the affine curve T into a smooth projective algebraic curve T̄ .
We can extend F to a birational map C′q × T̄ 99K X. Resolving this birational
map by a sequence of blowups on points of indeterminacy, we can get a bira-
tional morphism µ : Y → C′q × T̄ and a morphism h = F ◦ µ : Y → X. Here µ
is obtained by repeatedly blowing up points on the smooth projective surface
C′q × T̄ . In each blowup step in this procedure, if the image of the center of the
blowup in C′q × T̄ lies on Ti = Pi × T̄ (i = 1, . . . , b), we denote the exceptional
divisors by Ēi, j ( j = 1, . . . , ni). Denote the total transforms of all such excep-
tional divisors on Y by Ei, j ( j = 1, . . . , ni). Take T0 = P× T̄ for a general point
P on C′q and take T ′i to be the strict transform of Ti by µ. We may take P such
that µ is isomorphic over T0 (so we can view T0 as a curve on Y), and we have
the linear equivalence

T ′i ∼ T0 −

ni∑
j=1

ϵi, jEi, j

for i = 1, . . . , b. Here the value of ϵi, j is given by ϵi, j = 1 or 0 depending on
whether the center of the blowup corresponding to Ei, j is on the strict transform
of Ti or not.

Take C0 = C′q × t0 ⊂ Y , since the morphism C0 → C is of degree q,

(h∗H ·C0) = q(H ·C).

Also (T0·C0) = 1. Since N1(Y)R is generated by C0,T0 and exceptional divisors
of µ, there exist integers c and ei, j such that

h∗H ≡ cC0 + q(H ·C)T0 −
∑
i, j

ei, jEi, j + E.

Here E is a divisor whose support is contained in the exceptional divisors
whose images are not on Ti. Since h∗H is nef, c ≥ 0 and ei, j ≥ 0.

Since dim h(Y) = 2, (h∗H)2 > 0. Note that

(h∗H)2 = 2cq(H ·C) +
∑
i, j

e2
i, j(Ei, j)2 + E2.

Since (E2) ≤ 0,

2cq(H ·C) −
∑
i, j

ϵ2i, je
2
i, j ≥ 2cq(H ·C) −

∑
i, j

e2
i, j > 0.
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Also for every i,

c −
ni∑
j=1

ϵi, jei, j = (h∗H · T ′i ) = 0.

Therefore,

2q(H ·C)
∑
i, j

ϵi, jei, j > b
∑
i, j

ϵ2i, je
2
i, j.

This implies that there exist indices i0 and j0 such that ϵi0, j0 = 1 and

2q(H ·C) > bϵi0, j0 ei0, j0 > 0,

which means that

(Ei0, j0 · T
′
i0 ) = ϵi0, j0 > 0

and

0 < (h∗H · Ei0, j0 ) = ei0, j0 <
2q(H ·C)

b
.

Hence there exists an irreducible component L′ of Ei0, j0 such that L = h(L′) is
a rational curve, Pi0 ∈ L, and

(H · L) <
2q(H ·C)

b
.

Recall that q = pm, and by the definition of b, we have

lim
m→∞

2q(H ·C)
b

=
2n(H ·C)
(−KX ·C)

,

so by taking m sufficiently large, we have

(H · L) ≤
2n(H ·C)
(−KX ·C)

.

Here note that the left-hand side is always an integer.
We have shown that for the images of any b points on C′q, there exists a

rational curve L passing through one of them and (H · L) satisfies the required
inequality. Next, we use this to show that for any point P ∈ C, there exists a
rational curve L such that P ∈ L and the degree (H · L) satisfies the required
inequality.

In the Hilbert scheme Hilb(X), the set of points corresponding to all rational
curves on X is a locally closed subset. This is because for a family of alge-
braic curves, genus is lower semicontinuous. Moreover, if we only consider all
rational curves of degree (i.e. the intersection number with H) bounded from
above by a constant number, then the set is a locally closed subset of finite
type. From the above argument, we conclude that there exists an irreducible
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locally closed subset Z ⊂ Hilb(X) such that if we take UZ ⊂ X × Z to be the
restriction of the universal familyU ⊂ X ×Hilb(X) on Z, then the fibers of the
second projection p2 : UZ → Z are rational curves on X of degree bounded
by 2n(H ·C)/(−KX ·C) and the image of the first projection p1(UZ) contains a
nonempty open subset of C. Take Z̄ to be the closure of Z in Hilb(X) and take
UZ̄ ⊂ X × Z̄ to be the restriction of the universal family. Then all irreducible
components of the fibers of the second projection p2 : UZ̄ → Z̄ are rational
curves, and the image of the first projection p1(UZ̄) contains C. Therefore,
there exists a rational curve passing through any fixed point on C with degree
bounded by 2n(H ·C)/(−KX ·C).

We can construct rational curves on algebraic varieties defined over a field
of characteristic 0 by lifting the above result to characteristic 0. The proof
essentially uses the property of Hilbert schemes again.

All given data as X, H, C can be described by finitely many polynomial
equations in finitely many invariables with finitely many coefficients in k.

By adding all coefficients of those equations to Z and localizing the sub-
ring of k by adding the inverses of finitely many elements, we can construct a
finitely generated Z-algebra R satisfying the following conditions.

(1) There exists a projective morphism XR → Spec R such that all the geomet-
ric fibers Xt are normal and the generic geometric fiber Xη̄ is isomorphic to
X. Here for a geometric point t of Spec R, we denote by Xt the fiber over t.

(2) There exists an ample Cartier divisor HR on XR whose restriction on Xη̄ is
H.

(3) There exists a closed subscheme CR of XR such that for any geometric
point t of Spec R, the fiber Ct is an irreducible algebraic curve on Xt which
does not pass through the singularities of Xt and is not a rational curve.

Here note that all conditions on fibers are open conditions, so we can make
appropriate localization to remove bad sets.

Consider the universal family on the Hilbert scheme

U ⊂ XR ×Spec R Hilb(XR/Spec R).

Then there exists a locally closed subset of finite type ZR ⊂ Hilb(XR/Spec R)
satisfying the following: For any geometric point t of Spec R, the set of points
in Hilb(XR/Spec R) corresponding to rational curves L on Xt such that

(Ht · L) ≤
2n(H ·C)
(−KX ·C)
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coincides with Zt. As the right-hand side is a constant, the degree of L is
bounded from above uniformly.

Take the closure Z̄R in Hilb(XR/Spec R) and take the restriction of the uni-
versal family UZ̄R

⊂ XR ×Spec R Z̄R. Then any irreducible component of any
geometric fiber of the second projection p2 : UZ̄R

→ Z̄R is a rational curve
with degree bounded from above.

As the residue field of a geometric point t is of positive characteristic, by the
argument of the first part, the image of the first projection p1(UZ̄t

) contains Ct.
Since Z̄R is a closed subscheme of finite type, it follows that CR ⊂ p1(UZ̄R

). In
particular, Cη̄ ⊂ p1(UZ̄η̄ ). This finishes the proof. □

The argument in the proof uses a method to deform the curve until its limit
breaks up with a piece (irreducible component) of rational curve, which is
called the bend-and-break method.

2.8 The lengths of extremal rays

In this section we define the “length” of an extremal ray and prove a theorem
stating that it is bounded by a constant depending only on the dimension. This
theorem also contains the assertion that extremal rays are generated by ratio-
nal curves, which is essential for many boundedness results and termination
results.

As the proof uses the existence theorem of rational curves proved in Sec-
tion 2.7, it is based on algebraic geometry in positive characteristics. In addi-
tion to this, we use the vanishing theorem which is specific in characteristic 0.
This theorem was also used to give an alternative proof of the discreteness of
extremal rays in the cone theorem (Step 5’) in Section 2.4.2.

For an extremal ray R of a morphism f : (X, B) → S , the minimal value
of the intersection numbers −((KX + B) ·C) for all irreducible curves C whose
classes are contained in R, is called the length of R.

First, we begin with generalizing the vanishing theorem for complex ana-
lytic varieties.

Theorem 2.8.1 ([115, Theorem 3.7]) Let f : X → S be a projective surjec-
tive morphism from a complex manifold to a possibly singular complex variety,
let B be an R-divisor with normal crossing support and coefficients in (0, 1),
and let D be a Cartier divisor on X. Assume that D− (KX + B) is relatively nef
and relatively big. Then Rp f∗(OX(D)) = 0 for any p > 0.

The theorem is proved by generalizing the Kodaira-type vanishing theorem
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for compact complex manifolds to weakly 1-complete complex manifolds. A
complex manifold is said to be weakly 1-complete if there exists a plurisubhar-
monic C∞-function ϕ such that the subset Xc = {x ∈ X | ϕ(x) ≤ c} is compact
for all c ∈ R. For a positive line bundle L on a weakly 1-complete complex
manifold X, Hp(X,KX + L) = 0 for all p > 0 ([112, 113]), the same as the
Kodaira vanishing theorem.

Theorem 2.8.2 Let (X, B) be a KLT pair and let f : X → Y be a birational
projective morphism to a normal algebraic variety. Assume that −(KX + B)
is f -ample. Take E to be any irreducible component of the exceptional set
Exc( f ) and denote n = dim E − dim f (E). Then the set {Ct} of all rational
curves Ct such that Ct is contracted by f to a point and satisfies the inequality
0 > ((KX + B) ·Ct) > −2n, covers E; that is,

⋃
t Ct = E.

Proof For a flat family whose generic fiber is a rational curve, any irreducible
component of its special fiber is again a rational curve. Therefore, it suffices to
show that, passing through a general point of E, there exists a rational curve
contracted by f satisfying the required inequality. Replacing Y by an affine
open subset intersecting f (E) and cutting Y by general hyperplanes, it suffices
to consider the case when f (E) is a point. We assume this in the following.

We need the following lemma.

Lemma 2.8.3 Take ν : E′ → E to be the normalization and take an f -ample
divisor H on X. Then

(Hn−1 · (KX + B) · E) > ((ν∗H)n−1 · KE′ ).

Proof We may assume that H is very ample. Cutting by hyperplanes in |H|
for n − 1 times, we get C ⊂ X0 from E ⊂ X. Since dim E = n, dim C = 1.
Denote B0 = B|X0 and ν−1(C) = C′.

Since KX0 = (KX+(n−1)H)|X0 and KC′ = (KE′+(n−1)ν∗H)|C′ , if the required
inequality fails, then ((KX0 + B0) · C) ≤ deg KC′ . Then there exists a Cartier
divisor A0 on C such that ((KX0 +B0) ·C) ≤ deg A0 and H0(C′,KC′ −ν

∗A0) , 0.
By the trace map we have H0(C, ωC(−A0)) , 0. Here ωC is the canonical sheaf
of C.

On the other hand, since C is 1-dimensional, we can take a sufficiently small
analytic neighborhood V ⊂ Y of f (C) and denote U = f −1(V) ∩ X0 such
that there exists a Cartier divisor A on U, where A0 = A|C and the support of A
does not intersect with irreducible components of Exc( f |U) other than C. Since
((KX0 + B0) ·C) ≤ deg A0, A − (KX0 + B0) is relatively nef for f : U → V .

By the complex analytic version of the vanishing theorem (Theorem 2.8.1),
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R1 f∗(OU(A)) = 0. Therefore, H1(C, A0) = 0 and H0(C, ωC(−A0)) = 0 by the
Serre duality theorem, which is a contradiction. So the inequality is proved. □

Go back to the proof of the theorem. If n = 1, then by deg KE′ < ((KX + B) ·
E) < 0, it is easy to see that E′ � P1 and −2 < ((KX + B) · E). Moreover, by
the vanishing theorem, R1 f∗OX = 0, which implies that E � P1.

Suppose that n > 1. By taking the degree of H sufficiently large, we may
assume that C is not a rational curve. By the lemma, (KE′ ·C′) < ((KX+B)·C) <
0, we can apply Theorem 2.7.2 to C′ ⊂ E′. Note that M = −ν∗(KX + B) is
ample on E′, so passing through any point on C′, there exists a rational curve
L′ satisfying (M · L′) ≤ 2n(M · C′)/(−KE′ · C′) < 2n. Then L = ν(L′) is the
rational curve we are looking for. □

Corollary 2.8.4 Let f : (X, B) → S be a projective morphism from a Q-
factorial KLT pair. Take an extremal ray R in NE(X/S ) such that ((KX+B)·R) <
0. Take E to be the exceptional set of the corresponding contraction morphism
h and denote n = dim E − dim h(E). Here E = X if h is a Mori fiber space.
Then E is covered by rational curves L such that L is contracted by h and
−((KX + B) · L) < 2n (respectively, ≤ 2n) if E , X (respectively, E = X).

Proof If E , X, this is Theorem 2.8.2. If E = X, this is by Theorem 2.7.2. □

2.9 The divisorial Zariski decomposition

In algebraic surface theory, the intersection theory of divisors is a very power-
ful tool. Since the intersection number is a symmetric bilinear form, the Zariski
decomposition theory can be developed in a strong form. In higher dimensional
algebraic geometry, it is difficult to construct a strong Zariski decomposition,
but if restricted to codimension 1, the “divisorial Zariski decomposition” can
be easily constructed, and is sufficiently useful.

Definition 2.9.1 Let f : X → S be a projective morphism from a normal
Q-factorial algebraic variety to a quasi-projective algebraic variety, let D be a
relatively pseudo-effective R-divisor, and let H be a relatively ample divisor. If

N = lim
t↓0

inf{D′ | D + tH ≡S D′ ≥ 0}

has finite coefficients as an R-divisor, then we define the relative divisorial
Zariski decomposition D = P+ N of D over S by taking P = D− N. Here P is
called the numerically movable part and N is called the numerically fixed part.

If D = P, then D is said to be numerically movable. The cone consisting
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of numerical equivalence classes of all numerically movable R-divisors is de-
noted by Mov(X/S ) ⊂ N1(X/S ) and called the numerically movable cone.

Let us give a further explanation about the definition. Fixing H and a positive
number t, since [D + tH] ∈ Big(X/S ), D + tH is numerically equivalent to an
effective divisor. Therefore, the effective R-divisor

Nt = inf{D′ | D + tH ≡S D′ ≥ 0}

can be defined. Here the infimum of R-divisors is defined by taking the infi-
mum of the coefficients of each irreducible component. Since H is numerically
free, we know that Nt′ ≥ Nt if t′ ≤ t. But here we should be careful that by
taking limit N = limt↓0 Nt, the coefficients of N may go to infinity though the
number of irreducible components is bounded by ρ(X/S ) (cf. Lemma 2.9.3).
An example given by Lesieutre ([93]) shows that this can happen. Therefore,
the relative divisorial Zariski decomposition can be defined only if N is an
R-divisor, that is, none of its coefficients is infinity. Nevertheless we know
the existence of the relative divisorial Zariski decomposition in the following
cases:

Lemma 2.9.2 ([116, Lemma III.4.3]) The relative divisorial Zariski decom-
position of a relatively pseudo-effective R-divisor D exists if one of the follow-
ing conditions holds:

(1) D is relatively numerically equivalent to an effective R-divisor.
(2) codim( f (Ni)) ≤ 1 hold for all irreducible component Ni of N. In particular,

they hold if S is a point.

If dim X = 2, then the divisorial Zariski decomposition and the classical
Zariski decomposition coincide ([61]).

Lemma 2.9.3 Assume that the relative divisorial Zariski decomposition D =
P + N exists. Then

(1) N is uniquely determined as an effective R-divisor and the number of irre-
ducible components of N is bounded by ρ(X/S ).

(2) P is relatively pseudo-effective.
(3) N and P are independent of the choice of the relatively ample divisor H.

Proof (1) As H is numerically free, Nt′ ≥ Nt for t′ ≤ t. On the other hand,
the number of irreducible components of Nt is bounded by the number of nu-
merically linearly independent R-divisors, which is ρ(X/S ). So

N = lim
t→0

Nt
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is uniquely determined as an effective R-divisor.
(2) P is relatively pseudo-effective just because

P = lim
t→0

(D + tH − Nt),

where D + tH − Nt is relatively pseudo-effective.
(3) For another relatively ample divisor H′, there exist positive integers

m,m′ such that mH − H′ and m′H′ − H are both relatively ample. Hence N
is independent of the choice of H. □

Lemma 2.9.4 (1) The numerically movable cone Mov(X/S ) is a closed cone,
and we have the following inclusions

Amp(X/S ) ⊂ Mov(X/S ) ⊂ Eff(X/S ).

(2) Let α : X 99K Y be a birational map between normal Q-factorial al-
gebraic varieties projective over a quasi-projective algebraic variety S .
Assume that α is isomorphic in codimension 1, then the natural isomor-
phism α∗ : N1(X/S )→ N1(Y/S ) induces a bijective map α∗(Mov(X/S )) =
Mov(Y/S ).

Proof (1) Let D be a relatively pseudo-effective R-divisor and let H be a
relatively ample divisor. If D + tH ∈ Mov(X/S ), then it is easy to see that
Nt′ = 0 for any t′ > t. Hence if D + tH ∈ Mov(X/S ) for any t > 0, then
D ∈ Mov(X/S ). So the numerically movable cone is closed.

If D is relatively nef, then D+ tH is relatively ample and hence the nef cone
is contained in the numerically movable cone.

(2) Recall that α is well defined by Lemma 1.5.13. Take relatively ample
divisors HX and HY on X and Y such that HY − α∗HX is relatively ample. If
inf{D′ | D + tHX ≡S D′ ≥ 0} = 0, then inf{D′′ | α∗D + tHY ≡S D′′ ≥ 0} = 0,
which means that the image of a numerically movable divisor is numerically
movable. □

Remark 2.9.5 If dim X = 2, then being numerically movable is equivalent
to being nef. Hence in this case the numerically movable cone coincides with
the nef cone, and the divisorial Zariski decomposition is the classical Zariski
decomposition.

For a pair (X, B), the divisors that should be contracted in order to get a
minimal model can be determined by the divisorial Zariski decomposition of
KX + B:

Theorem 2.9.6 Let (X, B) be a Q-factorial DLT pair and let f : X → S be
a projective morphism to a quasi-projective variety. Assume that there exists
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a minimal model α : (X, B) 99K (Y,C) with induced projective morphism g :
Y → S . Then the divisorial Zariski decomposition KX + B = P + N over S
exists. Moreover, let E be a prime divisor on X, then E is contracted by α (that
is, α∗E = 0) if and only if E is an irreducible component of N.

Proof Note that KX + B is relatively pseudo-effective since it has a minimal
model, hence we can consider the divisorial Zariski decomposition.

Take birational projective morphisms p : Z → X and q : Z → Y from a
normal algebraic variety Z such that q = α◦ p. By assumption, the discrepancy
G = p∗(KX + B) − q∗(KY +C) is effective and E is contracted by α if and only
if p−1

∗ E is an irreducible component of G.
In the following we show that N = p∗G.
Take a relatively ample divisor H′ on Y and a relatively ample divisor H on

X such that H − p∗q∗H′ is relatively ample. For any t > 0, since KY +C + tH′

is relatively ample and

KX + B + tH = p∗q∗(KY +C + tH′) + t(H − p∗q∗H′) + p∗G,

we have

inf{D′ | KX + B + tH ≡S D′ ≥ 0} ≤ p∗G.

Therefore, N is well defined and N ≤ p∗G.
Conversely, if KX + B + tH ≡S D′ ≥ 0, then α∗D′ ≡S KY +C + tα∗H and

p∗D′ − q∗α∗D′ ≡S p∗(KX + B + tH) − q∗(KY +C + tα∗H)

= G + t(p∗(H) − q∗(α∗H)).

Note that both sides are exceptional divisors over Y , so they are actually equal
by the negativity lemma. Therefore,

p∗Nt ≥ G + t(p∗(H) − q∗(α∗H)).

Taking the limit as t → 0, we can see that N ≥ p∗G. □

Remark 2.9.7 (1) If dim X = 2, contracting all those divisors in N, or in
other words contracting all (−1)-curves, will produce a minimal model. If
dim X ≥ 3, then the situation becomes much more complicated because
the geometry in codimension 2 or higher is involved.

(2) The Zariski decomposition of a divisor D on an algebraic surface is discov-
ered by Zariski ([144]) during the study of the section ring

⊕∞

m=0 H0(X,mD)
of the divisor D. It is a consequence of the intersection theory of divisors
and the general theory of symmetric bilinear forms. In particular, if we
consider the Zariski decomposition of the canonical divisor, then the nu-
merically movable part coincides with the pullback of the canonical divisor
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on the minimal model. In this sense, we can say that the Zariski decompo-
sition of canonical divisors is equivalent to the minimal model theory.

Generalizing this consideration, the log version of the existence of min-
imal models in dimension 2 can be proved as an application of the Zariski
decomposition ([52]). Moreover, [30] generalized the Zariski decomposi-
tion to pseudo-effective divisors.

In dimension 2, the intersection theory of divisors is available so that
we can use the general theory of symmetric bilinear forms to define the
Zariski decomposition, but this is not the case in dimensions 3 and higher.
So in [61], the divisorial Zariski decomposition was defined only for big
divisors using limits of linear systems. [116] pushed this forward and gen-
eralized the definition to pseudo-effective divisors. In [16], the fixed part
was defined using R-linear equivalence. Here the definition is simplified
by replacing R-linear equivalence with numerical equivalence.

Similar to the case of dimension 2, if the numerically movable part is
nef, then indeed we can get a minimal model. In order to deal with prob-
lems caused by subsets of codimensions 2 and higher, we need to replace
X by blowups. Although this approach to the minimal model is not suc-
cessful, it might be helpful for understanding the problem. In this book,
we use flips instead of blowups to deal with subsets of codimensions 2 and
higher.

In addition, there is also an analytical approach to the analytical Zariski
decomposition, which has played a certain role ([138]).

If the numerically movable part is not 0, then we can make many global
sections by adding a little positivity:

Theorem 2.9.8 (Nakayama [116]) Let D be a pseudo-effective R-divisor on
a normal projective Q-factorial algebraic variety X. Take D = P+ N to be the
divisorial Zariski decomposition. If P . 0, then there exists an ample divisor
H such that the function in positive integer m satisfies

lim
m→∞

dim H0(X, ⌞mD⌟ + H) = ∞.

Proof Since N is effective, we may assume that D = P. Consider the numer-
ical base locus

NBs(D) = lim
t↓0

(
⋂
{Supp(D′) | D + tH ≡ D′ ≥ 0}).

Since N = 0, NBs(D) has no irreducible component of codimension 1. Also,
since this is a limit of an increasing sequence of closed subsets, it is a union
of at most countably many subvarieties of codimension at least 2. Therefore,
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we may take a very general smooth curve C ⊂ X by cutting by very general
hyperplanes such that C ∩ NBs(D) = ∅. Since D . 0, (D ·C) > 0.

Fix an ample divisor H and take Lm = ⌞mD⌟ + H. We will show that if m is
a sufficiently large integer, then the natural map H0(X, Lm) → H0(C, Lm|C) is
surjective. Note that ⌞mD⌟ ·C = (mD ·C)− ((mD−⌞mD⌟) ·C can be arbitrarily
large if m is sufficiently large, since (D · C) > 0 and ((mD − ⌞mD⌟) · C) is
bounded. Hence H0(C, Lm|C) can be arbitrarily large and the theorem can be
proved by the above surjectivity.

Note that C does not pass through the singular locus of X, consider g : Y →
X to be the blowup along C, and denote by E the exceptional divisor. For any
t > 0, there exists an effective R-divisor Dm ≡ mD + tH such that its support
does not intersect C, and (Y, g∗Dm) is KLT in a neighborhood of E.

Note that

g∗Lm − E − (KY + g∗Dm)

= g∗(⌞mD⌟ + H − (KX + Dm)) − (n − 1)E

≡ g∗((1 − t)H − (mD − ⌞mD⌟) − KX) − (n − 1)E.

Here n = dim X. Note that we may take H sufficiently large comparing to
irreducible components of KX , E, D, and t sufficiently small such that the right-
hand side is ample.

By the Nadal vanishing theorem,

H1(Y, I(Y, g∗Dm) ⊗ OY (g∗Lm − E)) = 0.

By assumption,

E ∩ Supp(OY/I(Y, g∗Dm)) = ∅,

hence the natural map

H0(Y, g∗Lm)→ H0(E, (g∗Lm)|E)

is surjective. This proves the claim. □

Conversely, if the function dim H0(X, ⌞mD⌟ + H) of positive integer m is
bounded, then we say that the numerical Iitaka–Kodaira dimension of D is 0,
which is denoted by ν(X,D) = 0. In general, we define the numerical Iitaka–
Kodaira dimension as the following:

Definition 2.9.9 The numerical Iitaka–Kodaira dimension ν(X,D) of an R-
divisor D is defined to be the minimal integer ν satisfying the following prop-
erty ([116]): For any fixed H, there exists a positive real number c such that for
any positive integer m, the inequality

dim H0(X, ⌞mD⌟ + H) ≤ cmν
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holds. If D is not pseudo-effective, then we denote ν(X,D) = −∞.

This definition corresponds to the definition of the Iitaka–Kodaira dimension
κ(X,D), which is just the minimal integer κ satisfying that there exists a positive
real number c such that for any positive integer m, the inequality

dim H0(X, ⌞mD⌟) ≤ cmκ

holds.

2.10 Polyhedral decompositions of cones of divisors

A polytope in a real vector space is the convex hull of finitely many points.
It is called a rational polytope if all its vertices are points with rational num-
bers as coordinates (rational points). In this section, we consider polyhedral
decompositions of cones of divisors with respect to minimal models or canon-
ical models and their applications. A line segment is an important example of
a polytope, and the MMP with scaling is related to the decomposition of this
polytope.

When changing the coefficients bi in the log canonical divisor KX +
∑

i biBi,
the corresponding canonical model changes. This phenomenon is similar to
that quotient spaces change according to polarizations in the geometric invari-
ant theory (GIT).

2.10.1 Rationality of sections of nef cones

Applying the lengths of extremal rays, we can show that sections of nef cones
are rational polytopes:

Theorem 2.10.1 (Shokurov [129]) Let X be a normal Q-factorial algebraic
variety, let f : X → S be a projective morphism, and let B1, . . . , Bt be effective
Q-divisors. Assume that (X, Bi) is KLT for all i. Take P to be the smallest convex
closed subset containing all Bi in the real vector space of R-divisors on X and
denote N = {B′ ∈ P | KX + B′ is relatively nef}. Take {R j} to be the set of all
extremal rays R such that there exists a point B′ ∈ P with ((KX + B′) · R) < 0.
Take H j = {B′′ ∈ P | ((KX +B′′) ·R j) = 0} to be the rational hyperplane section
of P determined by R j. Then the following assertions hold:

(1) For any interior point x in P, take U to be a sufficiently small neighborhood
of x, then it intersects only finitely many rational hyperplanes H j.

(2) N is a rational polytope.
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Proof (1) Assume that any neighborhood U of x intersects infinitely many
distinct H j. Then there exists a rational line in the smallest real linear space
containing P passing through a sufficiently near neighborhood of x with the
following property: L ∩ U is an open subset of the rational closed interval
L ∩ P = [B,C] intersecting infinitely many H j at distinct points. Denote L ∩
H j = (1 − t j)B + t jC and take t0 ∈ (0, 1) to be a limit point of the set {t j}.

By construction, either ((KX + B) · R j) < 0 or ((KX + C) · R j) < 0 holds. By
the lengths of extremal rays, we can take a rational curve l j generating R j such
that either

0 < (−(KX + B) · l j) ≤ 2b

or

0 < (−(KX +C) · l j) ≤ 2b.

Here b is the maximal dimension of fibers of f .
There exists a positive integer m such that m(KX + B) and m(KX + C) are

both Cartier. Then by definition, there are only finitely many values of

t j =
−m((KX + B) · l j)

m((KX +C) · l j) − m((KX + B) · l j)
.

Therefore, there is no accumulation of {t j}, a contradiction.
(2) By the cone theorem, the nef set N is the intersection of the inner sides

of the hyperplanes H j. Therefore, by (1), N is a rational polytope in the interior
of P. We only need to investigate the neighborhood of the boundary of P.

Take L to be any rational linear subspace contained in the smallest linear
space containing P, we will prove that N∩L is a rational polytope by induction
on dim L. If P ⊂ L, then this is the assertion of the theorem. Take PL to be the
smallest face of P containing L ∩ P. We may replace P by PL and assume that
P = PL, that is, L contains an interior point of P.

If dim L = 1, then N ∩ L is a point or a closed interval. Every endpoint is a
rational point: This is clear if the point is on the boundary of P, and this follows
from (1) if the point is an interior point of P.

Now assume that dim L > 1. For any face P′ of P, N ∩ P′ ∩ L is a rational
polytope by the inductive hypothesis. Since N is locally a rational polytope
near interior points of P, it suffices to show that N ∩ L is locally a rational
polytope near every vertex B of N ∩ P′ ∩ L.

Take any rational line L′ ⊂ L passing through B and containing an interior
point of P and write P ∩ L′ = [B,C]. Then N ∩ L′ = [B, (1 − t0)B + t0C]
for some t0 ∈ [0, 1]. Here t0 is a rational number by (1). If t0 , 0, 1, then
(1 − t0)B + t0C is an interior point of P, and there exists an index j such that
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L′ ∩ H j = {(1 − t0)B + t0C}. Since (m(KX + B) · l j) > 0 and after multiplying
by m it becomes an integer, by the argument of (1), there exists a constant
c > 0 independent of the choice of L′ such that t0 ≥ c. Therefore, there exists
a sufficiently small neighborhood U of B such that N ∩ L ∩ U is a cone with
vertex B.

Take a general rational hyperplane M sufficiently near to B, then N∩L∩M is
a rational polytope by the inductive hypothesis, hence N∩L∩U is a cone over
this rational polytope. This finishes the proof that N ∩ L is a rational polytope.
Hence N is a rational polytope. □

Remark 2.10.2 In this theorem, since we fix finitely many divisors in the
beginning, the section of the nef cone is a rational polytope. In general, such a
statement is not true for N1(X/S ) since there are infinitely many divisors. For
example, the surface of the nef cone of an Abelian variety is defined by the
equation (Dn) = 0, which is not linear.

2.10.2 Polyhedral decomposition according to canonical models

For a given pair (X, B), its minimal model is not unique in general, but its
canonical model is unique if it exists. Therefore, we first consider the decom-
position according to canonical models:

Theorem 2.10.3 (Polyhedral decomposition I [129, 73]) Let f : X → S be
a projective morphism from a normal Q-factorial algebraic variety to a quasi-
projective variety and let B1, . . . , Bt be effective R-divisors such that (X, Bi)
is KLT for all i. Take V to be the affine subspace generated by all Bi in the
real vector space of divisors. Take P′ to be the polytope generated by all Bi.
Consider the following convex closed subset of P′:

P = {B =
∑

i

biBi ∈ P′ | [KX + B] ∈ Eff(X/S )}.

Assume the following conditions:

• For each point B ∈ P, there exists a minimal model α : (X, B) 99K (Y,C) and
a canonical model g : Y → Z of f : (X, B)→ S .

• For each point B ∈ P, there exists a polytope P′B ⊂ V containing B as an
interior point in the topology of V such that if we denote

PB = {B′ ∈ P′B ∩ P′ | [KY + α∗B′] ∈ Eff(Y/Z)},

then for any B′ ∈ PB, the morphism g : (Y, α∗B′) → Z admits a minimal
model and a canonical model.
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Then there exists a decomposition into finitely many disjoint subsets

P =
s∐

j=1

P j

and rational maps β j : X 99K Z j satisfying the following properties:

(1) B ∈ P j if and only if β j gives the canonical model of f : (X, B)→ S .
(2) The closures P̄ j of P j are unions of polytopes. In particular, P is a poly-

tope.
(3) If P j ∩ P̄ j′ , ∅, then there exists a morphism f j j′ : Z j′ → Z j such that
β j = f j j′ ◦ β j′ .

Here note that P j is not necessarily connected.

Proof First, note that (X, B) is KLT for any B ∈ P′, therefore we can use the
framework of the minimal model theory. We prove the theorem by induction
on dim V . If dim V = 0, then the assertion is trivial. Assume that dim V ≥ 1.
Fix any point B ∈ P. It is an arbitrary point which is not necessarily a rational
point.

Take the minimal model α : (X, B) 99K (Y,C) and the canonical model
g : (Y,C) → Z. There exists an R-Cartier divisor H on Z relatively ample
over S such that KY + C = g∗H. Take the polytope P′B, for any B′ ∈ PB,
take the minimal model α′ : (Y, α∗B′) 99K (Y ′,C′), and the canonical model
g′ : (Y ′,C′) → Z′ of g : (Y, α∗B′) → Z. Take h : Z′ → Z to be the natural
morphism. There exists an R-Cartier divisor H′ on Z′ relatively ample over Z
such that KY ′ +C′ = (g′)∗H′. Take a sufficiently small real number δ such that
(1 − δ)h∗H + δH′ is relatively ample over S . Take B′′ = (1 − δ)B + δB′ and
C′′ = (1 − δ)α∗C + δC′, then the negativity still holds, so α′ ◦ α : (X, B′′) 99K
(Y ′,C′′) is a minimal model of f : (X, B′′) → S and g′ : (Y ′,C′′) → Z′ is the
canonical model.

We can take such δ independent of B′ but depending only on B. First, we
take P′B sufficiently small such that for any B′ ∈ P′B ∩ P, KX + B′ is negative
with respect to α, so we do not need to worry about the negativity. Since H is
ample over Z, we may take a sufficiently small ϵ > 0 such that (H · ΓZ) > ϵ for
any relative curve ΓZ on Z. Then we may take δ = ϵ/(2ϵ+4 dim X). Indeed, we
will show that KY ′ + (1− 2δ)α∗C + 2δC′ is relatively nef over S , which implies
that (1−2δ)h∗H+2δH′ is relatively nef over S , and therefore (1−δ)h∗H+δH′ is
relatively ample over S . Assume, to the contrary, that KY ′ + (1−2δ)α∗C+2δC′

is not relatively nef over S , then there exists a negative extremal ray R, which
is also a (KY ′ + C′)-negative extremal ray since KY ′ + α∗C is relatively nef
over S . (Here recall that KY + C is relatively numerically trivial over Z, and
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hence KY ′ + α∗C is crepant to KY + C, which is nef over S .) By the lengths of
extremal rays, R is generated by a rational curve Γ such that ((KY ′ + C′) · Γ) ≥
−2 dim X. Note that Γ is not contacted over Z as KY ′+C′ is nef over Z, therefore
(h∗H · Γ) ≥ ϵ and then

((KY ′ + (1 − 2δ)α∗C + 2δC′) · Γ) ≥ 0,

a contradiction.
Therefore, to summarize, if we take P′B sufficiently small, then for any B′ ∈

PB, (Y ′,C′′) and Z′ are minimal and canonical models for both f : (X, B′)→ S
and g : (Y, α∗B′)→ Z. In particular, PB = P′B∩P. Also we can see that they are
minimal and canonical models for f : (X, (1− t)B+ tB′)→ S for any 0 < t ≤ 1.

The boundary ∂(P′B ∩ P′) of P′B ∩ P′ (as a subset of V) is a finite union of
(dim V − 1)-dimensional polytopes (∂(P′B ∩ P′))k. By the above argument, PB

is a cone over PB ∩ (∂(P′B ∩ P′)) with vertex at B. We can apply the inductive
hypothesis to (∂(P′B∩P′))k and (Y,C)→ Z. Here to check the second condition,
we use the second condition on X and the fact that X and Y have the same
minimal model and canonical model for any divisor in PB. Then PB ∩ (∂(P′B ∩
P′)) can be decomposed into a disjoint union of finitely many subsets whose
closures are polytopes, and these subsets correspond to canonical models of
(Y, α∗B′)→ Z.

Cones over these polytopes with vertex at B gives the decomposition of PB

into finitely many (not necessarily rational) polytopes. Since P′ is compact,
it can be covered by finitely many such P′B, and the first two assertions are
proved. For the third assertion, just take B ∈ P j ∩ P̄ j′ . □

2.10.3 Polyhedral decomposition according to minimal models

Next, we consider the decomposition according to minimal models:

Theorem 2.10.4 (Polyhedral decomposition II [129, 73]) Keep the assump-
tion in Theorem 2.10.3. Then for each P j, there is a finite disjoint decomposi-
tion

P j =

t j∐
k=1

Q j,k

satisfying the following properties: fix an arbitrary birational map α : X 99K Y
such that

Q = {B ∈ P | α is a minimal model of f : (X, B)→ S }

is nonempty, then
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(1) Q is locally closed, whose closure is a polytope.
(2) There exists an index j such that Q ⊂ P̄ j.
(3) If Q ∩ P j , ∅ for some j, then there exists k such that Q ∩ P j = Q j,k.
(4) The closure of Q̄ j,k is a polytope for any j, k.

Remark 2.10.5 For any fixed j, k, it is possible that there are infinitely many
α such that Q∩P j = Q j,k. For example, for a pair (X, B) satisfying KX+B ≡S 0,
there might be infinitely many birational maps α inducing minimal models
(Example 2.10.7).

Proof (1) Taking the intersection of P with the pre-image of the nef cone
Amp(Y/S ) by the push-forward map α∗ induced by the birational map and
cutting by finitely many linear inequalities given by negativity of log canonical
divisors, we can obtain Q. The former is a closed polytope by Theorem 2.10.1,
and the latter is an open condition, hence we get the conclusion.

(2) It is easy to see that if B, B′ ∈ Q, then tB + (1 − t)B′ ∈ Q for any
t ∈ [0, 1]. Hence Q is a convex set. Take a relative interior point B ∈ Q, that is,
an interior point of Q in the affine subspace generated by Q, take g : Y → Z
to be the canonical model of (Y, α∗B). Then [α∗(KX + B)] ∈ g∗Amp(Z/S ) and
g∗Amp(Z/S ) is a face of Amp(Y/S ). For any B′ ∈ Q, since [α∗(KX + B′)] ∈
Amp(Y/S ) and Q is convex, we have [α∗(KX + B′)] ∈ g∗Amp(Z/S ). Moreover,
if B′ is another relative interior point, then [α∗(KX+B′)] ∈ g∗Amp(Z/S ). Hence
if we take P j to be the subset corresponding to the canonical model g ◦ α, then
Q ⊂ P̄ j.

(3) Given two birational maps αi : X 99K Yi (i = 1, 2) with corresponding
subsets ∅ , Qi ⊂ P. Assume that there exist morphisms gi : Yi → Z such that
β = g1 ◦ α1 = g2 ◦ α2 corresponds to some P j. Consider the birational map
γ : Y1 99K Y2 determined by α2 = γ ◦ α1. We claim that if γ is isomorphic in
codimension 1, then Q1 ∩ P j = Q2 ∩ P j.

Indeed, take a point B ∈ Q1 ∩ P j, we can write KY1 + α1∗B = g∗1H for a
relatively ample R-divisor H on Z. Since γ is isomorphic in codimension 1,
KY2 + α2∗B = g∗2H. Therefore, B ∈ Q2 ∩ P j.

In particular, if Q1 ∩ Q2 ∩ P j , ∅, then the minimal models corresponding
to a point B ∈ Q1 ∩ Q2 ∩ P j are isomorphic in codimension 1, and therefore
Q1 ∩ P j = Q2 ∩ P j.

In summary, by the above argument, we get a disjoint decomposition

P j =
∐
α

(Q ∩ P j)
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where α runs over all birational contractions α : X 99K Y , and Q ∩ P j depends
only on the set of divisors contracted by α.

Take B j,l to be vertices of P̄ j and take {Em} to be the set of prime divisors ap-
pearing in the numerically fixed part of some KX+B j,l. Note that {Em} is a finite
set and contains all prime divisors appearing in the numerically fixed part of
KX + B for any B ∈ P j. So by Theorem 2.9.6, there are finitely many possibili-
ties for the set of prime divisors contracted by α, and hence the decomposition
of P j is finite.

(4) Since P̄ j is a union of polytopes and Q̄ is a polytope, Q̄ j,k is a polytope.
Here we remark that Q j,k and Q̄ j,k are convex. □

Corollary 2.10.6 In Theorems 2.10.3 and 2.10.4, if all Bi are Q-divisors, then
P, P′, Q̄ j,k are all rational polytopes and P̄ j is a union of rational polytopes.

Proof Q̄ is determined by cutting the pullback of the nef cone of the minimal
model by finitely many linear inequalities with rational coefficients. As the
section of the nef cone is a rational polytope by Theoren 2.10.1, Q̄ is also a
rational polytope.

If P j contains an interior point as a subset of V , then a general point of P j

is contained in some Q ⊂ P̄ j. So the closure of interior points of P j is the
union of such Q̄, which is a union of rational polytopes. Therefore, P is also a
rational polytope.

If P j does not contain an interior point as a subset of V , then P j is contained
in a union of faces of rational polytopes. In this case, we may just replace P by
those faces in the beginning to get the same conclusion.

Q̄ j,k is the intersection of a rational polytope and a union of rational poly-
topes, hence is a rational polytope. □

Example 2.10.7 Consider a general hypersurface X in P2 × P1 × P1 of type
(3, 2, 2). X is a smooth projective 3-dimensional algebraic variety with KX ∼ 0.
We consider the polyhedral decomposition of the pseudo-effective cone of this
example, in which there are infinitely many rational polytopes. This is also an
example such that the quotient group of the birational automorphism group by
the biregular automorphism group Bir(X)/Aut(X) is an infinite group.

Denote by P1, P2, P3 the projective spaces in the fiber product, take Li to be
the pullback of hyperplanes Hi in Pi by the projection pi : X → Pi (i = 1, 2, 3).
L1, L2, L3 form a basis of the real linear space N1(X). The nef cone Amp(X) is
the simplicial cone generated by L1, L2, L3.

The projection pi : X → Pi corresponds to the extremal ray ⟨Li⟩. Here
⟨ ⟩ means the generated cone. The generic fiber of p1 is an elliptic curve and
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the generic fibers of p2, p3 are K3 surfaces. The projection pi j : X → Pi × P j

corresponds to the face ⟨Li, L j⟩. The generic fiber of p23 is an elliptic curve and
the generic fibers of p12, p13 are sets of two points. Taking a Stein factorization,
they give small contractions q12, q13.

Express the equation of X by f (x, y)z2
0 + g(x, y)z0z1 + h(x, y)z2

1 = 0. Here
[x0 : x1 : x2], [y0 : y1], [z0 : z1] are homogeneous coordinates of P1, P2, P3, and
f , g, h are homogeneous polynomials of degree 3 for x0, x1, x2 and of degree 2
for y0, y1. The exceptional set of q12 : X → Y12 is defined by f = g = h = 0,
which consists of 54 copies of P1, since (3H̄1 + 2H̄2)3 = 54 on P1 × P2, where
H̄1, H̄2 are pullbacks of H1,H2.

As p12 : X → P1 × P2 gives a degree 2 extension of function fields, X
admits a birational automorphism induced by the Galois group Z/(2), which
is a birational map α : X 99K X exchanging two points in the generic fiber of
p12, and given by (x, y, [z0 : z1]) 7→ (x, y, [hz1 : f z0]). Indeed, this birational
map is nontrivial but preserves the equation of X and q12. By the form of this
transformation,

α∗L1 = L1,

α∗L2 = L2,

α∗L3 = 3L1 + 2L2 − L3.

Here to distinguish from the same X, we denote α : X0 99K X1. We consider
(X1, 0) as a nontrivial minimal model of (X0, 0).

For p13 : X → P1 × P3, we can similarly define the birational map β :
X0 99K X−1 exchanging two points in the generic fiber. We have β∗L1 = L1,
β∗L2 = 3L1 − L2 + 2L3, and β∗L3 = L3.

Note that α2 and β2 are the identity map, but α and β are not commutative.
For each n ∈ Z, we inductively define birational maps αn : X0 99K Xn by
α ◦ αn = α−n+1, β ◦ αn = α−n−1. If we take Mk =

3
2 (k2 + k)L1 + (k + 1)L2 − kL3,

then

α∗nL1 = L1,

α∗nL2 =

M2m n = 2m;

M2m n = 2m + 1,

α∗nL3 =

M2m−1 n = 2m;

M2m+1 n = 2m + 1.

So the image of the nef cone α∗nAmp(Xn) is generated by L1,Mn−1,Mn, which
is different from each other for each n. So we get a subgroup Z/(2) ∗ Z/(2) ⊂
Bir(X) of the birational automorphism group.
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The pseudo-effective cone is decomposed into nef cones:

Eff(X) =
⋃
n∈Z

α∗nAmp(Xn).

Indeed, the right-hand side is generated by L1 and Mk; all these vertices cor-
respond to morphisms to lower dimensional varieties, and the limit of the rays
generated by Mk is L1 as |k| → ∞, so divisors outside this cone cannot be ef-
fective. Moreover, since L1 and Mk are all effective, the pseudo-effective cone
coincides with the effective cone Eff(X).

This cone is decomposed into infinitely many rational polyhedral cones, and
each of them corresponds to a birational map to a minimal model of X. The rea-
son that infinitely many cones appear is because the finite-dimensional space of
divisor classes is the projection of the space of all divisors, which is of infinite
dimension.

2.10.4 Applications of polyhedral decompositions

The polyhedral decomposition theorem plays an important role in the proof
of the existence of minimal models in Chapter 3. Here we introduce other
applications as the finiteness of crepant blowups, the termination of MMP with
scaling, the fact that birational minimal models are connected by flops, and the
generalization of MMP with scaling under weaker conditions.

For a KLT pair (X, B), a crepant blowup of (X, B) is a birational projective
morphism g : (Y,C) → (X, B) from a Q-factorial KLT pair such that g∗(KX +

B) = KY + C. In particular, if (Y,C) admits no crepant blowup other than
automorphisms, then it is called a maximal crepant blowup.

As an application of [16], we can get the following corollary by the argument
in [61]:

Corollary 2.10.8 (Crepant blowup) For a KLT pair (X, B), there exists a
maximal crepant blowup for (X, B). Moreover, the set of crepant blowups of
(X, B) is finite up to isomorphisms.

Proof Take a very log resolution f : Ỹ → (X, B) of (X, B) and define C̃ by the
equation f ∗(KX+B) = KỸ+C̃. Write C̃ = C̃+−C̃− into the positive part and the
negative part. Take a minimal model g : (Y,C) → (X, B) of f : (Ỹ , C̃+) → X
(the existence of such minimal model is by [16]). Since [KỸ + C̃+] = [C̃−] ∈
N1(Y/X) and all irreducible components of C̃− are contracted by f , the set of
divisors contracted by the rational map α : Ỹ 99K Y induced by the minimal
model coincides with the support of C̃− by the negativity lemma. That is, the
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set of exceptional divisors of g coincides with the set of exceptional divisors of
f with nonnegative coefficients in C̃. As f is a very log resolution, any blowup
of Ỹ does not create new prime divisors in the latter set. In particular, suppose
that there exists a nonisomorphic projective birational map g0 : Y0 → Y from
another normal variety and write g∗0(KY + C) = KY0 + C0, then there exists a
g0-exceptional prime divisor E on Y0 and its coefficient in C0 is negative by
the construction of C̃. Therefore, g is a maximal crepant blowup.

Since g is birational, for any divisor D on Y , there exists an effective divisor
D′ on Y such that D ≡X D′. For any sufficiently small ϵ > 0, (Y,C + ϵD′) is
KLT. By [16], there exists a minimal model over X and the canonical model
exists by the basepoint-free theorem. Hence by the polyhedral decomposition
theorem, there exists a polyhedral decomposition in a neighborhood of the
origin of N1(Y/X) corresponding to the canonical models. Taking cones of
those polytopes, we get a decomposition of N1(Y/X) into polyhedral cones.

For any maximal crepant blowup g′ : (Y ′,C′) → X, the set of exceptional
divisors of g′ coincides with the set of exceptional divisors of f with nonneg-
ative coefficients in C̃ as discrete valuations on k(X). Indeed, if this is not the
case, we can take a common very log resolution and a minimal model over
Y ′ as above to create a nontrivial crepant blowup of Y ′. Therefore, Y and Y ′

are isomorphic in codimension 1. The image of Amp(Y ′/X) under the natural
homomorphism N1(Y ′/X) → N1(Y/X) coincides with one of the above poly-
hedral cones. Hence there are only finitely many maximal crepant blowups.
Note that here we use the fact that Amp(Y ′/X) determines Y ′ → X up to iso-
morphisms by Lemma 1.5.13.

For a crepant blowup g′′ : (Y ′′,C′′) → X, we can take a maximal crepant
blowup (Y ′,C′) of (Y ′′,C′′), which is also a maximal crepant blowup of (X, B),
and the nef cone Amp(Y ′′/X) corresponds to a face of Amp(Y ′/X). Hence there
are only finitely many such things. □

Assuming the existence of minimal models and canonical models, we can
show the termination of flips in MMP with scaling. Note that if there exists a
sequence of flips that terminates, then it implies the existence of minimal mod-
els, but be aware that this is different with that any sequence of flips terminates.

Corollary 2.10.9 (Termination of MMP with scaling) Let f : (X, B) → S be
a projective morphism from a Q-factorial KLT pair. Consider the MMP with
scaling of H. Here (X, B + H) is KLT, [KX + B] ∈ Eff(X/S ) and [KX + B +
H] ∈ Big(X/S ) ∩ Amp(X/S ). Assume that there exists a minimal model and
canonical model for (X, B). Then this MMP terminates.

Proof Take X = X0 and denote each step of the MMP by αi : Xi 99K
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Xi+1. Since there are only finitely many divisorial contractions, after remov-
ing finitely many steps, we may assume that αi are all flips. From now on we
use the same notation for strict transforms of a divisor.

Since KX + B+H is relatively big and KX + B is relatively pseudo-effective,
for any t > 0, KXi + B + tH is relatively big, hence its minimal model exists,
by the existence of minimal models in [16]. Moreover, by the basepoint-free
theorem, its canonical model exists. By assumption, the minimal model and
canonical model exist if t = 0. We may apply the polyhedral decomposition
theorem to the segment [B, B+H], and get a decomposition into finitely many
interval P j. To simplify the notation, we denote B + tH by t and consider the
decomposition on [0, 1]. Take

ti = min{t ∈ R | KXi + B + tH is relatively nef},

t′i = max{t ∈ R | KXi + B + tH is relatively nef}.

In other words, the interval Qi in which X 99K Xi gives a minimal model
is just [ti, t′i ]. Recall that for the extremal ray corresponding to αi, we have
((KXi+B)·R) < 0, ((KXi+1+B)·R) > 0, ((KXi+B+tiH)·R) = ((KXi+1+B+tiH)·R) =
0. Hence ti = t′i+1.

We consider the case ti = ti+1 > 0. In this case, take (Y,C) to be the common
canonical model of (Xi, B + tiH) and (Xi+1, B + tiH). Since KXi + B + tiH is
relatively nef and relatively big over S , gi+1 : (Xi+1, B + ti+1H) → (Y,C) is a
crepant blowup. Then by Corollary 2.10.8, there are only finitely many such
gi+1, that is, there does not exist any infinite sequence

0 < ti = ti+1 = ti+2 = · · · .

As a consequence, there are infinitely many distinct nontrivial intervals Qi if
the MMP does not terminate.

Suppose that there exists an interval P j in which ti is an interior point, take
β : X 99K Y to be the corresponding canonical model. Possibly changing the
index i, we can take Qi such that there exists t > ti in P j ∩ Qi. Also, we can
take Qi′ (i′ > i) such that there exists t′ < ti in P j ∩Qi′ . In this case, there exist
morphisms gi : Xi → Y and gi′ : Xi′ → Y . By construction, there exists an R-
divisor HY on Y such that KXi + B+ tH = g∗i HY and KXi′ + B+ tH = g∗i′HY , but
the former is relatively nef while the latter is not, a contradiction. Therefore,
if the interval Qi contains an interior point, then its closure coincides with the
closure of the interval P j, and there are only finitely many such Qi.

From the above discussion, the MMP terminates. □

For a given pair, minimal models, if they exist, are not unique in general.
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However, we can show that minimal models are connected by elementary bi-
rational maps, so-called “flops”.

A birational map α : (X, B) 99K (Y,C) between two Q-factorial DLT pairs is
called a flop if there exist birational projective morphisms f : (X, B) → (Z,D)
and g : (Y,C)→ (Z,D) to a third pair satisfying the following conditions:

(1) α = g−1 ◦ f .
(2) f , g are isomorphic in codimension 1.
(3) ρ(X/Z) = ρ(Y/Z) = 1.
(4) f ∗(KZ + D) = KX + B and g∗(KZ + D) = KY +C.

The definition is the same as flips except for condition (4). Different from a
flip, we require that the levels of canonical divisors are preserved.

Corollary 2.10.10 (Flop decomposition) Let f : (X, B) → S be a projec-
tive morphism from a KLT pair. Assume that it admits a minimal model and
a canonical model. Then any two minimal models αi : (X, B) 99K (Yi,Ci)
(i = 1, 2) are connected by a sequence of flops.

Proof By Lemma 2.5.12, Yi are isomorphic in codimension 1, and have the
same canonical model. Take gi : Yi → Z to be the morphism to the canonical
model. Take a general relatively ample effective Q-divisor H2 on Y2. After
replacing H2 by ϵH2 for some sufficiently small ϵ > 0, we may assume that
(Y1,C1 + H2) is KLT. Here we use the same notation for strict transforms of a
divisor.

We can run a (KY1+C1+H2)-MMP over Z with scaling of a general relatively
ample divisor, and reach a minimal model Y ′ such that KY ′ + C1 + H2 is nef
over Z. Since KYi +Ci is numerically trivial over Z, KY2 +C2+H2 is ample over
Z and Y ′ → Y2 is the canonical model. As Yi are isomorphic in codimension
1 and Y2 is Q-factorial, Y2 ≃ Y ′ and the MMP is a sequence of flips, which is
also a sequence of flops with respect to (Y1,C1). □

Remark 2.10.11 In [72], the same result is proved without assuming the
existence of canonical models.

Applying the polyhedral decomposition theorem, we can generalize the frame-
work of MMP with scaling to the case when the boundary is not big:

Corollary 2.10.12 ([13]) Let f : X → S be a projective morphism from a
normal Q-factorial algebraic variety and let B,C be R-divisors. Assume that
(X, B) and (X, B +C) are KLT, KX + B +C is relatively nef, and KX + B is not
relatively nef. Take

t0 = min{t | KX + B + tC is relatively nef}.
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Then there exists an extremal ray R in NE(X/S ) such that ((KX+B+t0C)·R) = 0
and ((KX + B) · R) < 0.

Proof Take effective Q-divisors B1, . . . , Bs such that (X, Bi) is KLT and the
spanned rational polytope P contains B, B+C. By Theorem 2.10.1, N = {B′ ∈
P | KX + B′ is relatively nef} is a rational polytope.

Consider all (KX + B)-negative extremal rays Rk, and take lk to be a curve
generating Rk with ((KX + B) · lk) ≥ −2 dim X. Take the real number tk deter-
mined by ((KX + B + tkC) · Rk) = 0, then supk tk = t0. Assume, to the contrary,
that tk < t0 for all k, we claim that there is no infinite sequence {tk} converging
to t0.

Note that we may take rational points B′i in P and real numbers bi > 0
(i = 1, . . . , u) such that Supp(Bi) = Supp(B),

∑
bi = 1, and B =

∑
biB′i .

Moreover, (X, B′i) is KLT and ((KX + B′i) · lk) ≥ −2 dim X for all i, k. Since N is
a rational polytope, there exist rational points C j in N and real numbers c j > 0
( j = 1, . . . , v) such that

∑
c j = 1 and B + t0C =

∑
c jC j.

Take a positive integer m such that mKX , mB′i , and mC j are all Cartier. Then
we have integers mik, n jk as the following:

mik = (m(KX + B′i) · lk) ≥ −2m dim X;

n jk = (m(KX +C j) · lk) ≥ 0.

Moreover, since
∑

i mikbi < 0, there are only finitely many possible values of
mik.

Since KX + B + tkC = (1 − tk/t0)(KX + B) + tk/t0(KX + B + t0C), we have
(1 − tk/t0)

∑
i bimik + tk/t0

∑
j c jn jk = 0. Therefore,

1 − t0/tk =

∑
j c jn jk∑
i bimik

which is in a discrete subset of R, and the claim is proved. □

2.11 Multiplier ideal sheaves

The goal of this section is to give an algebraic definition of a multiplier ideal
sheaf and introduce the Nadel vanishing theorem. The theory of multiplier
ideal sheaves is a basic tool in the L2-theory in complex analysis and multiplier
ideal sheaves are defined for line bundles with metrics. Here we only consider
the case when metrics are defined algebraically. Also we consider a so-called
adjoint ideal sheaf which is the log version of the multiplier ideal sheaf.
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2.11.1 Multiplier ideal sheaves

It is classical in complex analysis to investigate functions which are not L2

by multiplying functions to make them L2, but it has been found in recent
years that the multiplier ideal sheaf consisting of all multiplier functions is
very useful in algebraic geometry.

Definition 2.11.1 For a pair consisting of a normal algebraic variety X and an
effective R-divisor B such that KX + B is R-Cartier, the multiplier ideal sheaf
I(X, B) is defined as the following. Take a log resolution f : Y → (X, B) of the
pair (X, B), write f ∗(KX + B) = KY +C, then

I(X, B) = f∗(OY (⌜−C⌝)).

Proposition 2.11.2 (1) The multiplier ideal sheaf I(X, B) is a nonzero co-
herent ideal sheaf, and it does not depend on the choice of log resolutions.

(2) Rp f∗(OY (⌜−C⌝)) = 0 for any p > 0.
(3) The cosupport of the multiplier ideal sheaf, or the support of OX/I(X, B),

coincides with the non-KLT locus of (X, B). In particular, I(X, B) = OX if
and only if (X, B) is KLT.

Proof (1) Since the irreducible components of C with negative coefficients
are contracted by f , I(X, B) is a coherent subsheaf of OX .

Take f1 : Y1 → X to be another log resolution. By the desingularization
theorem, there exists a log resolution dominating both f and f1. So we only
need to consider the case that f1 dominates f , that is, there exists a morphism
g : Y1 → Y such that f1 = f ◦ g. Write f ∗1 (KX + B) = KY1 + C1. It suffices to
show that

g∗OY1 (⌜−C1⌝) = OY (⌜−C⌝).

The left-hand side is naturally contained in the right-hand side. We prove the
inverse inclusion.

Denote by F the normal crossing divisor which is the union of the excep-
tional divisors of f and the strict transform of the support of B. If g is a per-
missible blowup with respect to (Y, F), then the equality of both sides can be
directly checked. In general, g is dominated by a sequence of such blowups, so
the inverse inclusion can be proved.

(2) As −C − KY is relatively numerically trivial over X and f is birational,
−C − KY is relatively nef and relatively big over X. Then we can apply the
vanishing theorem to get the conclusion.

(3) Write C = C+ − C−, where C+,C− are effective R-divisors with no
common irreducible component. Then as in the proof of Lemma 1.11.9, by (2)
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we know that the natural map

OX ≃ f∗OY → f∗(O⌞C+⌟(⌜C−⌝))

is surjective. Hence f∗O⌞C+⌟ ≃ f∗(O⌞C+⌟(⌜C−⌝)). On the other hand,OX/I(X, B) ≃
f∗(O⌞C+⌟(⌜C−⌝)) and the support of f∗O⌞C+⌟ is exactly the non-KLT locus of
(X, B). □

The fact (2) in the above proposition seems to be a reason why multiplier
ideal sheaves are useful.

Example 2.11.3 If X is smooth and the support of B is normal crossing, then
I(X, B) = OX(⌜−B⌝).

Exercise 2.11.4 For a birational projective morphism f : Y → X between
smooth algebraic varieties, show that Rp f∗OY = 0 for p > 0 by the same
argument as in Proposition 2.11.2.

We will need the following lemma in Section 2.12:

Lemma 2.11.5 Let (X, B) be a KLT pair, let B′ be an effective R-Cartier
divisor, let L be a line bundle, and let s be a global section of L. Assume that
KX is Q-Cartier and

B′ − B ≤ div(s).

Then

s ∈ H0(X, L ⊗ I(X, B′)).

Proof Take a log resolution f : Y → (X, B+B′) and write f ∗(KX+B) = KY+C
and f ∗(KX + B′) = KY +C′. Note that

− f ∗div(s) ≤ − f ∗B′ + f ∗B = −C′ +C.

Since ⌜−C⌝ ≥ 0 and div(s) is Cartier,

− f ∗div(s) ≤ ⌜−C′⌝.

Therefore, OX(−div(s)) ⊂ I(X, B′). □

The Nadel vanishing theorem is a basic tool in the proof of the exten-
sion theorem in Section 2.12. Here if we only consider algebraic multiplier
ideal sheaves, then the Nadel vanishing theorem is an easy consequence of the
Kawamata–Viehweg vanishing theorem:

Theorem 2.11.6 (Nadel vanishing theorem) Let X be a normal algebraic
variety and let B be an effective R-divisor such that KX + B is R-Cartier. Let
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f : X → S be a projective morphism and let D be a Cartier divisor. Assume
that D − (KX + B) is relatively nef and relatively big over S . Then

Rp f∗(OX(D) ⊗ I(X, B)) = 0

for any p > 0.

Proof Take a log resolution g : (Y,C)→ (X, B), then g∗D−C−KY is relatively
nef and relatively big over X and over S . Therefore,

Rpg∗(OY (g∗D + ⌜−C⌝)) = 0 and

Rp( f ◦ g)∗(OY (g∗D + ⌜−C⌝)) = 0

for any p > 0. The conclusion follows from the spectral sequence

Ep,q
2 = Rp f∗Rqg∗(OY (g∗D + ⌜−C⌝))⇒ Rp+q( f ◦ g)∗(OY (g∗D + ⌜−C⌝))

and

g∗(OY (g∗D + ⌜−C⌝)) = OX(D) ⊗ I(X, B).

□

For reference, we define analytic multiplier ideal sheaves. Let X be a smooth
complex manifold and let L be a line bundle on X. A singular Hermitian metric
h on L is a Hermitian metric allowing infinity values of the form h = h0e−ϕ,
where ϕ is a locally L1 function and h0 is a C∞ Hermitian metric. The curvature
of h can be defined similarly as the curvature of a usual Hermitian metric and
it is a real current of type (1, 1). Then the multiplier ideal sheaf I = I(L, h) is
defined by

Γ(U, I) = {p ∈ Γ(U,OX) | pe−ϕ is locally L2}.

As h is singular, regular functions are not necessarily L2-integrable. The name
“multiplier” is clear from the definition. It can be shown that I is an analytic
coherent ideal sheaf.

Example 2.11.7 Let gi (i = 1, . . . , r) be regular functions on a complex man-
ifold X and take divisors Bi = div(gi) to be the zero divisors. Take an R-divisor
B =

∑
i biBi, where bi are positive real numbers. Define a singular Hermitian

metric h on the trivial line bundle OX as

h =
∑

i

|gi|
−2bi .

In this case, the algebraic multiplier ideal sheaf coincides with the analytic
multiplier ideal sheaf: I(X, B) = I(OX , h).
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Of course, it is not always the case as in this example, so analytic multiplier
ideal sheaves are more general than the algebraic multiplier ideal sheaves con-
sidered in this book. For example, singular Hermitian metrics that appear in
the (algebraic) Hodge theory are known to be different from the algebraic ones
as they have logarithmic growth.

The following theorem is the original form of the Nadel vanishing theorem.
As the metric h is not necessarily induced by a divisor, it is more general than
the algebro-geometric version.

Theorem 2.11.8 ([111]) Let X be a compact complex smooth manifold and
let L be a line bundle admitting a singular Hermitian metric h. Denote by
I the corresponding multiplier ideal sheaf. Assume that the curvature of h is
semipositive and strictly positive at some point of X. Then Hp(X,OX(KX +L)⊗
I) = 0 for any p > 0.

2.11.2 Adjoint ideal sheaves

Next, we define adjoint ideal sheaves as a variant of multiplier ideal sheaves.
Adjoint ideal sheaves are defined in algebraic geometry, and there is no natural
analogue in complex analysis. The reason is that the logarithmic differential
form dz/z is not L2. This definition is natural when considering residue map
and doing induction on dimensions.

Definition 2.11.9 Let X be a normal algebraic variety and let B be an effec-
tive R-divisor. Assume that KX + B is R-Cartier. Assume that there exists an
irreducible component Z in B with coefficient 1. Then the adjoint ideal sheaf
IZ(X, B) is defined as follows. Take a log resolution f : Y → (X, B) of the pair
(X, B), write f ∗(KX + B) = KY +C and W = f −1

∗ Z, then

IZ(X, B) = f∗(OY (⌜−C⌝ +W)).

The adjoint ideal sheaf measures how far the pair (X, B) is from being PLT
(purely log terminal). Fix an irreducible component Z in B with coefficient 1,
then the set of points on Z, in a neighborhood of which (X, B) is not PLT, is a
closed subset of Z. It is called the non-PLT locus of (X, B) with respect to Z.

Proposition 2.11.10 (1) The adjoint ideal sheaf IZ(X, B) is a nonzero coher-
ent ideal sheaf, and it does not depend on the choice of log resolutions.

(2) Rp f∗(OY (⌜−C⌝ +W)) = 0 for any p > 0.
(3) The intersection of Z and the support of OX/IZ(X, B) coincides with the

non-PLT locus of (X, B) with respect to Z. In particular, IZ(X, B) = OX in
a neighborhood Z if and only if the pair (X, B) is PLT in a neighborhood
Z.
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Proof The proof is the same as that of Proposition 2.11.2.
(1) Given another log resolution f1 : Y1 → X, we may assume that there

exists a morphism g : Y1 → Y such that f1 = f ◦g. Write f ∗1 (KX+B) = KY1+C1

and W1 = f −1
1∗ Z. It suffices to show that

g∗OY1 (⌜−C1⌝ +W1) = OY (⌜−C⌝ +W).

Then the proof is the same as that of Proposition 2.11.2.
(2) Note that −C +W − (KY +W) is relatively nef and relatively big over X,

and its restriction to W is again relatively nef and relatively big over Z.
(3) Note that, all coefficients of C −W are strictly smaller than 1 if and only

if ⌜−C⌝ +W ≥ 0. □

The relation of multiplier ideal sheaves and adjoint ideal sheaves is as the
following:

Lemma 2.11.11 Let X be a normal algebraic variety and let B be an effec-
tive R-divisor. Assume that KX + B is R-Cartier. Assume that there exists an
irreducible component Z in B with coefficient 1. Assume that Z is normal and
write (KX + B)|Z = KZ + BZ . Then there is a short exact sequence:

0→ I(X, B)→ IZ(X, B)→ I(Z, BZ)→ 0.

Therefore, IZ(X, B)OZ = I(Z, BZ).

Proof Write (KY+C)|W = KW+CW , where CW = (C−W)|W . Denote fZ = f |Z ,
then f ∗Z (KZ + BZ) = KW + CW . We get the desired short exact sequence from
the exact sequence

0→ OY (⌜−C⌝)→ OY (⌜−C⌝ +W)→ OW (⌜−CW⌝)→ 0

and R1 f∗OY (⌜−C⌝) = 0. The last assertion follows from I(X, B) ⊂ OX(−Z). □

We can extend the Nadel vanishing theorem to adjoint ideal sheaves:

Theorem 2.11.12 Let X be a normal algebraic variety and let B be an effec-
tive R-divisor. Assume that KX + B is R-Cartier. Assume that there exists an
irreducible component Z in B with coefficient 1. Let f : X → S be a projective
morphism and let D be a Cartier divisor. Assume that D− (KX +B) is relatively
nef and relatively big over S and (D−(KX+B))|Z is relatively nef and relatively
big over f (Z). Then

Rp f∗(OX(D) ⊗ IZ(X, B)) = 0

for any p > 0.
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Proof The proof is similar to that of Theorem 2.11.6. If Z is normal, then this
is a consequence of Theorem 2.11.6 by using the exact sequence in Lemma 2.11.11.

□

Let us define a special case of logarithmic multiplier ideal sheaf, which is a
general version of adjoint ideal sheaf:

Definition 2.11.13 Let (X, B) be a DLT pair consisting of a normal algebraic
variety X and an R-divisor B on X. Let L be a linear system of divisors and
let m be a positive integer. Take Z = ⌞B⌟, which is not necessarily irreducible.
Take a general element G ∈ L, assume that it does not contain LC centers of
the pair (X, B). Then the logarithmic multiplier ideal sheaf IZ(X, B + L/m) is
defined as the following. Take a log resolution f : Y → X of (X, B+G) in strong
sense, which is isomorphic over the generic point of each LC center of (X, B)
and resolves the base locus of L. Write f ∗(KX + B) = KY + C, f ∗G = P + N,
and W = f −1

∗ Z. Here P is a general element of the movable part of f ∗L and N
is the fixed part. By construction, P is free. Then we define

IZ(X, B + L/m) = f∗(OY (⌜−C − N/m⌝ +W)).

Lemma 2.11.14 (1) The logarithmic adjoint ideal sheaf IZ(X, B + L/m) is a
nonzero coherent ideal sheaf, and it does not depend on the choice of log
resolutions.

(2) Rp f∗(OY (⌜−C − N/m⌝ +W)) = 0 for any p > 0.

Proof (1) Given another log resolution f1 : Y1 → X, we may assume that
there exists a morphism g : Y1 → Y such that f1 = f ◦ g. Write f ∗1 (KX + B) =
KY1 +C1, f ∗1 D = P1 + N1, and W1 = f −1

1∗ Z. It suffices to show that

g∗(OY1 (⌜−C1 − N1/m⌝ +W1)) = OY (⌜−C − N/m⌝ +W).

We can reduce this to the case of permissible blowup as Proposition 2.11.2.
In the case of permissible blowup, we can prove the assertion by comparing
coefficients explicitly.

(2) Note that −C−N/m+W−(KY+W) ≡X P/m is relatively nef and relatively
big over X, also its restriction on each LC center of (Y,W) is again relatively
nef and relatively big. The conclusion follows from applying the vanishing
theorem. □

We can prove the Nadel vanishing theorem for logarithmic adjoint ideal
sheaves:

Theorem 2.11.15 Let (X, B) be a DLT pair, let L be a linear system of divi-
sors, let m be a positive integer, let D be a Cartier divisor, and let f : X → S be
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a projective morphism to an affine variety. Take Z = ⌞B⌟. Assume the following
conditions:

(1) A general element G ∈ L does not contain LC centers of the pair (X, B).
(2) D− (KX + B+G/m) and its restriction to each LC center are relatively nef

and relatively big over S or the image of the center in S , respectively.

Then

Hp(X, IZ(X, B + L/m) ⊗ OX(D)) = 0

for any p > 0.

Proof As P is relatively nef over S , the proof is similar to that of Theo-
rem 2.11.6. □

In order to simultaneously investigate linear systems induced by multiples of
a divisor, we define asymptotic multiplier ideal sheaves. They play important
roles in the proof of extension theorems.

Definition 2.11.16 Let (X, B) be a DLT pair. Let Lm (m ∈ Z>0) be a sequence
of linear systems of divisors satisfying Lm+Lm′ ⊂ Lm+m′ , that is, D+D′ ∈ Lm+m′

if D ∈ Lm, D′ ∈ Lm′ . Take Z = ⌞B⌟. Assume that there exists m such that a
general element D ∈ Lm does not contain LC centers of the pair (X, B). Then
define the asymptotic multiplier ideal sheaf to be

IZ(X, B + {Lm/m}) =
⋃
m>0

IZ(X, B + Lm/m).

Remark 2.11.17 By assumption, IZ(X, B + Lm/m) ⊂ IZ(X, B + Lm′/m′) if
m|m′. By the Noetherian property, the right-hand side which is a union of in-
finitely many ideals is actually obtained by a sufficiently large and sufficiently
divisible m. However, such m cannot be determined priorly. This is the trick of
asymptotic multiplier ideal sheaves.

The following lemma is a result on global generation of sheaves derived
from the vanishing theorem, which will be used in Section 2.12. For ample
sheaves the same assertion is difficult to prove, but for very ample sheaves it is
easy. We use the so-called Castelnuovo–Mumford regularity method:

Lemma 2.11.18 Let X be an n-dimensional quasi-projective algebraic vari-
ety, let OX(1) be a very ample invertible sheaf, and let F be a coherent sheaf.
Assume that

Hp(X,F ⊗ OX(m)) = 0

for any m ∈ Z≥0 and any p ∈ Z>0. Then F ⊗ OX(n) is generated by global
sections.
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Proof The proof is by induction on n. We may assume that n > 0. Fix any
point x ∈ X. Take F0 = H0

{x}(F ) to be the subsheaf of F containing all local
sections whose supports are x, then the quotient sheaf F1 = F /F0 has no local
section whose support is x. Consider the exact sequence

0→ F0 → F → F1 → 0.

Since H1(F0) = 0 by dimension reason, H0(F )→ H0(F1) is surjective. There-
fore, if F1 ⊗ OX(n) is generated by global sections at x, then so is F ⊗ OX(n).
So we may assume in the beginning that F has no local section whose support
is x.

Take a general global section s of OX(1) that vanishes at x. Take X′ to be
the corresponding hyperplane passing through x. Take OX′ (1) = OX(1) ⊗ OX′

and F ′ = F ⊗ OX′ (1). Since 0 is the only section of F that becomes 0 after
multiplying s, we get an exact sequence

0→ F → F ⊗ OX(1)→ F ′ → 0.

Hence

Hp(X′,F ′ ⊗ OX′ (m)) = 0

for any m ≥ 0 and any p > 0. By the inductive hypothesis, F ′ ⊗ OX′ (n − 1)
is generated by global sections. Since H1(X,F ⊗ OX(n − 1)) = 0, H0(X,F ⊗
OX(n))→ H0(X,F ′⊗OX′ (n−1)) is surjective, and henceF ⊗OX(n) is generated
by global sections at x. □

Corollary 2.11.19 Keep the assumptions in Theorem 2.11.15. Take a very
ample divisor H on X and denote dim X = n. Then

IZ(X, B + L/m) ⊗ OX(D + nH)

is generated by global sections.

Proof This follows directly from Theorem 2.11.15 and Lemma 2.11.18. □

2.12 Extension theorems

In this section, we prove extension theorems for pluri-log-canonical forms.

2.12.1 Extension theorems I

There are many versions of extension theorems. The following form due to
Hacon–McKernan and Takayama is a key point in the proof of the existence of
flips.
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Theorem 2.12.1 (Extension theorem I [35, 137]) Let (X, B) be a PLT pair
where X is a smooth algebraic variety and B is a Q-divisor with normal cross-
ing support. Let f : X → S be a projective morphism to an affine variety. Fix
a positive integer m0 such that D = m0(KX + B) is an integral divisor. Assume
that Y = ⌞B⌟ is irreducible. Assume the following conditions.

(1) There exists an ample Q-divisor A and an effective Q-divisor E such that
(X,Y + E) is PLT and

B = A + E + Y.

(2) There exists a positive integer m1 such that the support of a general el-
ement G ∈ |m1D| does not contain any LC center of (X, ⌜B⌝), that is, it
does not contain any irreducible component of intersections of irreducible
components of B.

Then the natural homomorphism

H0(X,mD)→ H0(Y,mD|Y )

is surjective for any positive integer m.

Remark 2.12.2 (1) The proof of the extension theorem discussed below is
extremely technical, which is not just something that can be reached by
calculating carefully.

(2) Trying to relax the assumptions of this theorem is an important question
in applications.

Proof The proof follows from the following Propositions 2.12.3 and 2.12.7.
□

First, we use the usual multiplier ideal sheaves to reduce the problem to the
extension problem for a sequence of slightly bigger divisors:

Proposition 2.12.3 Under condition (1) of Theorem 2.12.1, assume further
that there exists an effective divisor F whose support does not contain Y such
that for any sufficiently large positive integer l, the image of the natural homo-
morphism

H0(X, lD + F)→ H0(Y, (lD + F)|Y )

contains the image of

H0(Y, lD|Y )→ H0(Y, (lD + F)|Y ).

Then the restriction map

H0(X,D)→ H0(Y,D|Y )
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is surjective.

Proof Take any s ∈ H0(Y,D|Y ) and take D′ = div(s). By assumption, for a
sufficiently large and sufficiently divisible positive integer l, there exists Gl ∈

|lD + F| such that

Gl|Y = lD′ + F|Y .

Here note that this is an equality of divisors, not just a linear equivalence. Take

B′ =
m0 − 1

lm0
Gl + Y + E,

and consider the multiplier ideal sheaf I = I(X, B′). Note that

D − KX − B′

= m0(KX + B) − KX − B′

∼Q (m0 − 1)(KX + B) + B −
l(m0 − 1)

lm0
D −

m0 − 1
lm0

F − Y − E

= A −
m0 − 1

lm0
F

is ample if l is sufficiently large. Therefore, by the Nadel vanishing theorem,

H1(X, I(X, B′) ⊗ OX(D)) = 0.

Take

C′ = (B′ − Y)|Y =
m0 − 1

m0
D′ +

m0 − 1
lm0

F|Y + E|Y ,

then we have the following exact sequence

0→ I(X, B′)→ IY (X, B′)→ I(Y,C′)→ 0.

Hence the restriction map

H0(X, IY (X, B′) ⊗ OX(D))→ H0(Y, I(Y,C′) ⊗ OY (D|Y ))

is surjective. On the other hand, (X,Y + E) is PLT, hence

(Y,
m0 − 1

lm0
F|Y + E|Y )

is KLT if l is sufficiently large. Note that

C′ −
m0 − 1

lm0
F|Y − E|Y ≤ D′.

Hence by Lemma 2.11.5,

s ∈ H0(Y, I(Y,C′) ⊗ OY (D|Y )).

Therefore, s can be extend to a global section of H0(X,D). □
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Let us forget the situation of the theorem for a moment and use the following
notation in the following two lemmas. Let X be a smooth algebraic variety,
let B be a normal crossing divisor, let Y be an irreducible component of B,
let D be another divisor, and let f : X → S be a projective morphism to
an affine variety. Here all coefficients of B are taken to be 1 (in the situation
of the theorem ⌜B⌝ corresponds to B here, this is the only difference). Take
C = (B − Y)|Y . Assume that there exists a positive integer m1 such that the
support of a general element G ∈ |m1D| does not contain any LC center of
(X, B). Consider the following two sequences of linear systems on Y:

L0
m = |H

0(Y,mD|Y )|,

L1
m = |Im(H0(X,mD)→ H0(Y,mD|Y ))|.

Here | | denotes the corresponding linear system of the linear space. Then we
can define the corresponding asymptotic multiplier ideal sheaves

J0
C(Y,D|Y ) = IC(Y,C + {L0

m/m}),

J1
C(Y,D|Y ) = IC(Y,C + {L1

m/m}).

As L1
m ⊂ L0

m, J1
C(Y,D|Y ) ⊂ J0

C(Y,D|Y ). In the case C = 0, we simply write
J0(Y,D|Y ), J1(Y,D|Y ).

We compare the set of global sections and the set of extendable global sec-
tions as m goes to infinity. The next two lemmas prove inclusion relations in
two directions.

Lemma 2.12.4

H0(Y,D|Y ) = H0(Y, J0
C(Y,D|Y ) ⊗ OY (D|Y ));

Im(H0(X,D)→ H0(Y,D|Y )) ⊂ H0(Y, J1
C(Y,D|Y ) ⊗ OY (D|Y )).

Proof We will only show the second one. The proof of the first one is similar
but easier. Take m1 such that the support of a general element G ∈ |m1D| does
not contain any LC center of (X, B). Take a log resolution g : X′ → X of
(X, B +G), write g∗(KX + B) = KX′ + B′, Y ′ = g−1

∗ Y , (KX′ + B′)|Y ′ = KY ′ +C′,
and g∗G = P + N. Here we may assume that P is free and N is the fixed part,
and (B′)+ = g−1

∗ B. Then

Im(H0(X,D)→ H0(Y,D|Y ))

⊂ H0(Y ′,OY ′ (g∗D|Y + ⌞−N/m1|Y ′⌟))

⊂ H0(Y ′,OY ′ (g∗D|Y + ⌜−C′ − N/m1|Y ′⌝ + (C′)+))

⊂ H0(Y, J1
C(Y,D|Y ) ⊗ OY (D|Y )).

Here the first inclusion is by the fact that Fix(g∗D) ≥ ⌜N/m1⌝. □
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Lemma 2.12.5 Assume the following conditions:

(1) There exists an ample Q-divisor A′ and an effective Q-divisor E′ such that
D = A′ + E′.

(2) There exists a positive integer m′1 such that the support of a general ele-
ment G′ ∈ |m′1E′| does not contain any LC center of (X, B).

Then the following inclusion relation holds:

H0(Y, J1
C(Y,D|Y ) ⊗ OY (D|Y + KY +C))

⊂ Im(H0(X,D + KX + B)→ H0(Y,D|Y + KY +C)).

Proof Take a sufficiently large and sufficiently divisible m which realizes
J1

C(Y,D|Y ). For a general element Dm ∈ |mD|, take a log resolution g : X′ → X
of (X, B + Dm +G′) in strong sense, write g∗(KX + B) = KX′ + B′, Y ′ = g−1

∗ Y ,
(KX′ + B′)|Y ′ = KY ′ + C′, and g∗Dm = P + N. Here we may assume that P
is free and N is the fixed part, and (B′)+ = g−1

∗ B. Then (B′)+ has no common
irreducible component with the exceptional divisors of g, N, and g∗E′.

Take an effective Q-divisor F supported on the exceptional divisors of g
such that g∗A′ − F is ample. Then for any sufficiently small positive number ϵ,

g∗D − (1 − ϵ)N/m − ϵ(g∗E′ + F) ∼Q (1 − ϵ)P/m + ϵ(g∗A′ − F)

is ample. Moreover, since A′ is ample, N/m ≤ g∗E′ for any sufficiently divisi-
ble m. Therefore, for a sufficiently small ϵ,

⌜g∗D − (1 − ϵ)N/m − ϵ(g∗E′ + F)⌝ = g∗D − ⌞N/m⌟.

Then by the vanishing theorem,

H1(X′,KX′ + (B′)+ − Y ′ + g∗D − ⌞N/m⌟) = 0.

Hence

H0(X′,KX′ + (B′)+ + g∗D − ⌞N/m⌟)

→ H0(Y ′,KY ′ + (C′)+ + g∗D|Y ′ − ⌞N/m|Y ′⌟)

is surjective. On the other hand,

H0(X′,KX′ + (B′)+ + g∗D − ⌞N/m⌟) ⊂ H0(X,D + KX + B)

and

H0(Y ′,KY ′ + (C′)+ + g∗D|Y ′ − ⌞N/m|Y ′⌟)

= H0(Y, J1
C(Y,D|Y ) ⊗ OY (KY +C + D|Y )),

which proves the conclusion. □
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The following lemma is the core of the proof of the extension theorem:

Lemma 2.12.6 Let (X, B) be a PLT pair where X is a smooth algebraic va-
riety of dimension n and B is an effective Q-divisor with normal crossing sup-
port. Let f : X → S be a projective morphism to an affine variety. Fix a positive
integer m0 such that D = m0(KX+B) has integral coefficients. Fix a very ample
divisor H on X and take M = nH. Assume the following conditions:

(1) H is sufficiently ample comparing to B and D (this condition will be clar-
ified in the proof).

(2) There exists a positive integer m1 such that the support of a general ele-
ment G ∈ |m1D| does not contain any LC center of the pair (X, ⌜B⌝).

Then the following assertions hold:

(1) The inclusion relation

J0(Y, (mD + H)|Y ) ⊂ J1
⌜C⌝(Y, (mD + H + M)|Y )

holds for any nonnegative integer m.
(2) The inclusion relation

H0(Y, J0(Y, (mD + H)|Y ) ⊗ OY ((mD + H + M)|Y ))

⊂ Im(H0(X,mD + H + M)→ H0(Y, (mD + H + M)|Y ))

holds for any nonnegative integer m.

Proof (1) We will prove by induction on m. If m = 0, then both sides are OY .
Let us prove the conclusion for the case m + 1 assuming the case m.

Define an increasing sequence of integral divisors

Y ≤ B[1] ≤ · · · ≤ B[m0] = ⌜B⌝

by
m0∑
k=1

B[k] = m0B.

Take Dk = KX + B[k], D≤k =
∑k

s=1 Ds, and C[k] = (B[k] − Y)|Y . Also denote
D≤0 = 0 and B[m0+1] = ⌜B⌝. Note that D = D≤m0 .

Here we clarify the assumption on H: For any 0 ≤ k ≤ m0,

(a) D≤k + H + M is free, and
(b) D≤k + H − KX − Y is ample.



2.12. EXTENSION THEOREMS 173

Note that such condition does not depend on m.
We will prove the claim that

J0(Y, (mD + H)|Y ) ⊂ J1
C[k+1] (Y, (mD + D≤k + H + M)|Y )

by induction on 0 ≤ k ≤ m0. Note that the right-hand side is well defined by
assumption (a) on H.

Once the claim is proved, take k = m0, then

J0(Y, ((m + 1)D + H)|Y ) ⊂ J0(Y, (mD + H)|Y )

⊂ J1
⌜C⌝(Y, ((m + 1)D + H + M)|Y ),

which proves the conclusion for the case m + 1 and finishes the proof of (1).
If k = 0, then by the inductive hypothesis,

J0(Y, (mD + H)|Y ) ⊂ J1
⌜C⌝(Y, (mD + H + M)|Y ) ⊂ J1

C[1] (Y, (mD + H + M)|Y ).

Assume that the claim holds up to k−1, to proceed to the next step, we have
the following three inclusion relations:

H0(Y, J0(Y, (mD + H)|Y ) ⊗ OY ((mD + D≤k + H + M)|Y ))

⊂ H0(Y, J1
C[k] (Y, (mD + D≤k−1 + H + M)|Y ) ⊗ OY ((mD + D≤k + H + M)|Y ))

⊂ Im(H0(X,mD + D≤k + H + M)→ H0(Y, (mD + D≤k + H + M)|Y ))

⊂ H0(Y, J1
C[k+1] (Y, (mD + D≤k + H + M)|Y ) ⊗ OY ((mD + D≤k + H + M)|Y )).

Here the first inclusion relation is by the inductive hypothesis, the second is by
Lemma 2.12.5, and the third is by Lemma 2.12.4. Note that

mD + D≤k + H + M − (KX + Y + mD + H) − (n − 1)H = D≤k + H − KX − Y

is ample by assumption (b) on H. Hence by Corollary 2.11.19,

J0(Y, (mD + H)|Y ) ⊗ OY ((mD + D≤k + H + M)|Y )

is generated by global sections. To summarize, we showed that

J0(Y, (mD + H)|Y ) ⊂ J1
C[k+1] (Y, (mD + D≤k + H + M)|Y ).

(2) When m = 0 this is clear. For m > 0, using the first two inclusions above
for m − 1 and k = m0, we have

H0(Y, J0(Y, ((m − 1)D + H)|Y ) ⊗ OY ((mD + H + M)|Y ))

⊂ Im(H0(X,mD + H + M)→ H0(Y, (mD + H + M)|Y )).

On the other hand,

H0(Y, J0(Y, (mD + H)|Y ) ⊗ OY ((mD + H + M)|Y ))

⊂ H0(Y, J0(Y, ((m − 1)D + H)|Y ) ⊗ OY ((mD + H + M)|Y )),
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so we conclude the proof. □

Proposition 2.12.7 Under condition (2) of Theorem 2.12.1, there exists a
very ample divisor F, such that for any sufficiently large positive integer m, the
image of the restriction map

H0(X,mD + F)→ H0(Y, (mD + F)|Y )

contains the image of H0(Y,mD|Y ).

Proof By Lemma 2.12.6,

H0(Y,mD|Y ) ⊂ H0(Y, (mD + H)|Y )

= H0(J0(Y, (mD + H)|Y ) ⊗ OY ((mD + H)|Y ))

⊂ H0(J0(Y, (mD + H)|Y ) ⊗ OY ((mD + H + M)|Y ))

⊂ Im(H0(X,mD + H + M)→ H0(Y, (mD + H + M)|Y )).

So we may just take F = H + M. □

2.12.2 Extension theorems II

There are various versions of the extension theorem. The following theorem
is close to the original form of the extension theorem. This theorem has many
important corollaries such as the deformation invariance of plurigenera and the
preservation of canonical singularities under deformations, but will not be used
in subsequent sections.

Theorem 2.12.8 (Extension theorem II) Let (X, B) be a PLT pair where X is
a smooth algebraic variety and B is a Q-divisor with normal crossing support.
Let f : X → S be a projective morphism to an affine variety. Fix a positive
integer m0 such that D = m0(KX + B) is an integral divisor. Assume that Y =
⌞B⌟ is irreducible. Assume the following conditions.

(1) There exists an ample Q-divisor A and an effective Q-divisor E whose
support does not contain Y such that

KX + B = A + E.

(2) There exists a positive integer m1 such that the support of a general el-
ement G ∈ |m1D| does not contain any LC center of (X, ⌜B⌝), that is, it
does not contain any irreducible component of intersections of irreducible
components of B.

(3) Either m0 ≥ 2 or f (Y) , f (X).
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Then the natural homomorphism

H0(X,mD)→ H0(Y,mD|Y )

is surjective for any positive integer m.

Remark 2.12.9 (1) If taking B = Y in Theorem 2.12.8, then it is a theorem
in [71]. Theorem 2.12.1 is a generalization of this theorem.

(2) For a sufficiently large and sufficiently divisible positive integer m and a
general element G ∈ |m(KX + B)|, replacing B by B′ = B + ϵG for a
sufficiently small ϵ and taking a log resolution, we are in a similar situation
as Theorem 2.12.1. But the pair (X, B′) may not satisfy the conditions of
Theorem 2.12.1. In fact ⌜B′⌝ has more irreducible components than ⌜B⌝.
So Theorem 2.12.8 is not a corollary of Theorem 2.12.1.

Proof The proof is basically the same as that of Theorem 2.12.1 and we omit
the details. We just slightly modify Proposition 2.12.3.

If m0 ≥ 2, we modify Proposition 2.12.3 by taking

B′ =
m0 − 1 − ϵ

lm0
Gl + B + ϵE

for some sufficiently small positive rational number ϵ.
If m0 = 1 and f (Y) , f (X), then the statement says that

H0(X,KX + Y)→ H0(Y,KY )

is surjective, which is a consequence of a Kollár-type vanishing theorem saying
that

H1(X,KX)→ H1(X,KX + Y)

is injective (see [71, Theorem 2.8]). Here the condition f (Y) , f (X) is used to
guarantee that Y is contained in the pullback of a Cartier divisor on S . □

An important corollary of Theorem 2.12.8 is the following theorem on de-
formation invariance of plurigenera:

Corollary 2.12.10 (Siu [133]) Let f : X → S be a smooth projective mor-
phism between smooth algebraic varieties. Assume that the fiber Xη = f −1(η)
over the generic point η ∈ S is of general type. Then for any positive integer
m, the plurigenus dim H0(Xs,mKXs ) of a fiber Xs = f −1(s) is independent of
the choice of s ∈ S .

Proof We may assume that S is a smooth affine curve. Fix any point s ∈ S .
Fix an effective ample divisor A on X and take Aη = A|Xη . Since Xη is of general
type, there exists a sufficiently large positive integer m1 such that we may write
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m1KXη ∼ Aη + Eη for some effective divisor Eη. Taking the closure, we may
write m1KX ∼ A + E for some effective divisor E which does not contain Xs.

Then B = Y = Xs satisfies conditions in Theorem 2.12.8. By Theorem 2.12.8,
for any positive integer m,

H0(X,m(KX + Xs))→ H0(Xs,mKXs )

is surjective. Then the conclusion follows from the upper semicontinuity. □

The following corollary, stating that flat deformations of canonical singu-
larities are again canonical singularities, is important in the study of moduli
spaces of algebraic varieties:

Corollary 2.12.11 ([70]) Let f : X → S be a flat morphism from an algebraic
variety X to a smooth affine curve S . Fix x ∈ X and s = f (x) ∈ S . Assume that
the fiber Xs = f −1(s) over s has at worst canonical singularities at x. Then the
ambient space X has at worst canonical singularities at x. In particular, there
exists a neighborhood U ⊂ X of x such that for any s′ ∈ S , Xs′ ∩ U has at
worst canonical singularities.

Proof Replacing X by a sufficiently small affine neighborhood of x, we may
assume that Xs has at worst canonical singularities. Take a log resolution g :
X′ → X of the pair (X, Xs), denote by B = Y the strict transform of Xs. Since
Xs is normal, we may assume that X is also normal if X is sufficiently small.
Since Xs has at worst canonical singularities, there exists a positive integer m
such that mKXs is Cartier and the natural map

H0(Y,mKY )→ H0(Xs,mKXs )

is isomorphic. Applying Theorem 2.12.1 or 2.12.8 to the birational morphism
g, we have that

H0(X′,m(KX′ + Y))→ H0(Y,mKY )

is surjective. Therefore, the composition

H0(X′,m(KX′ + Y))→ H0(X,m(KX + Xs))→ H0(Xs,mKXs )

is surjective. So if X is sufficiently small, a nowhere vanishing section of mKXs

extends to a nowhere vanishing section of m(KX + Xs) and a global section of
m(KX′ + Y). This implies that m(KX + Xs) is also Cartier and m(KX′ + Y) ≥
g∗(m(KX + Xs)). Since Y ≤ g∗Xs, X has at worst canonical singularities.

The latter half is clear from the former half. □

Remark 2.12.12 The technique in the proof of the extension theorem was
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originally developed by Siu in the proof of the deformation invariance of pluri-
genera ([133]). Later [70] proved the deformation preservation of canonical
singularities by an algebraic interpretation of Siu’s argument (see also [71,
116]). Here instead of considering limits of metrics in complex analysis, asymp-
totic multiplier ideal sheaves are introduced. By the Noetherian property, an
asymptotic multiplier ideal sheaf is actually obtained at a finite stage without
knowing that at which stage it will be obtained, so it is helpful for proving
certain finiteness theorem. However, this method also has its limitation as it
cannot reflect infinite limits as analytic multiplier ideal sheaves. The exten-
sion theorem introduced in this section was proved by the log version of this
method ([35, 137]). After this, Siu proved the deformation invariance of pluri-
genera without assuming bigness of canonical divisors ([134]). An important
open problem is to find the algebraic interpretation of the proof of this result.
It seems that an algebraic interpretation of infinite limits described above is
necessary.



3
The finite generation theorem

In this chapter, we prove the finite generation of canonical rings. First, for al-
gebraic varieties of general type, we prove the existence of minimal models by
induction on dimensions, then we use the semipositivity theorem for algebraic
fiber spaces to reduce the problem to algebraic varieties of general type.

3.1 Setting of the inductive proof

In Birkar–Cascini–Hacon–McKernan (BCHM for short) ([16]), it turns out that
for MMP (minimal model program) with scaling, induction on dimensions
goes well under the assumption that the boundary contains an ample divisor.
To be more accurate, we should put the following conditions on the pair (X, B)
and the morphism f . We will simply call it the BCHM condition in this book.

(1) X is an n-dimensional normal Q-factorial algebraic variety, B is an ef-
fective R-divisor on X, and f : X → S is a projective morphism to a
quasi-projective variety.

(2) (X, B) is DLT (divisorially log terminal).
(3) There exists a relatively ample R-divisor A over S and an effective R-

divisor E such that B = A+E+⌞B⌟ and (X, E+⌞B⌟) is DLT with ⌞E⌟ = 0.

For a projective morphism f : (X, B) → S from a Q-factorial DLT pair, we
will show the following theorems:

• (Existence of flips) For any small contraction of KX + B, the flip exists.
• (Existence of PL [pre-limiting] flips) For any small contraction X → S of

KX + B, if there exists an irreducible component P of ⌞B⌟ such that −P is
relatively ample over S , then the flip exists.

178
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• (Existence of minimal models) If f : (X, B) → S satisfies the BCHM con-
dition and KX + B is relatively pseudo-effective, then there exists a minimal
model of f : (X, B)→ S .

• (Finiteness of minimal models) Suppose that P is a polytope spanned by
effective R-divisors such that for any B′ ∈ P, f : (X, B′) → S satisfies the
BCHM condition. Then there exist finitely many rational maps gk : X 99K Yk

such that for any B′ ∈ P with KX + B′ relatively pseudo-effective, there
exists a minimal model of f : (X, B′) → S , and any minimal model of
f : (X, B′)→ S coincides with one of gk.

• (Termination of MMP with scaling) Suppose that f : (X, B) → S and f :
(X, B′) → S satisfy the BCHM condition. Moreover, assume that KX + B′

is relatively nef. Then any MMP on f : (X, B) → S with scaling of B′ − B
terminates after finitely many steps.

• (Special termination of MMP with scaling) Suppose that f : (X, B) → S
and f : (X, B′) → S satisfy the BCHM condition. Moreover, assume that
⌞B′⌟ ≥ ⌞B⌟ and KX +B′ is relatively nef. Then any MMP on f : (X, B)→ S
with scaling of B′ − B is isomorphic in a neighborhood of ⌞B⌟ after finitely
many steps.

• (Nonvanishing theorem) If f : (X, B)→ S satisfies the BCHM condition and
KX + B is relatively pseudo-effective, then there exists an effective R-divisor
D such that D ≡S KX + B.

Remark 3.1.1 (1) The existence of PL flips and the special termination of
MMP with scaling are special cases of the existence of flips and the termi-
nation of MMP with scaling.

(2) The existence of flips is a special case of the existence of minimal models.
In fact, a flip is the relative canonical model of a relative minimal model.

(3) The statement of the finiteness of minimal models includes the existence
of minimal models.

Remark 3.1.2 The finite generation theorem, which is the main purpose of
this book, is obtained by showing the existence of minimal models for KLT
(Kawamata log terminal) pairs with KX+B big. However, the bigness of KX+B
is not preserved if restricted on the boundary. On the other hand, the BCHM
condition, considering DLT pairs with boundaries containing ample divisors,
is preserved if restricted on the boundary. If (X, B) is KLT and KX + B is big,
then after replacing B, we may assume that B contains an ample divisor. This
condition is preserved in the process of MMP, so induction on dimensions
works well in this situation (see Remark 3.1.4).

First, we modify the BCHM condition for KLT pairs, and show that the
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DLT version and the KLT version can be used appropriately according to the
situations. The KLT version BCHM condition is the following:

(1) X is an n-dimensional normal Q-factorial algebraic variety, B is an ef-
fective R-divisor on X, and f : X → S is a projective morphism to a
quasi-projective variety.

(2) (X, B) is KLT.
(3) B is relatively big over S .

Lemma 3.1.3 For each statement of the existence of flips, the existence of
minimal models, the finiteness of minimal models, the termination of MMP
with scaling, and the nonvanishing theorem, the DLT version holds if and only
if the KLT version holds.

Proof Let us explain how to replace the DLT and KLT versions by each other.
Let f : (X, B) → S be a morphism satisfying the DLT version BCHM

condition. Then there exists a sufficiently small positive real number t such
that A + t⌞B⌟ is relatively ample. Take a general effective relatively ample R-
divisor A1 ≡ A + t⌞B⌟, denote B′ = A1 + E + (1 − t)⌞B⌟, then (X, B′) is KLT.
So B ≡ B′ and it satisfies the KLT version BCHM condition.

Conversely, let f : (X, B) → S be a morphism satisfying the KLT version
BCHM condition. As B is relatively big, there exists an effective relatively
ample R-divisor A and an effective R-divisor E such that B ≡ A + E. For a
sufficiently small positive real number t, denote B′ = (1 − t)B + tA + tE, then
(X, (1− t)B+ tA+ tE) is KLT. So B ≡ B′ and it satisfies the DLT version BCHM
condition.

Here we should be a little careful about the existence of minimal models.
The problem is the following: If (X, B) is DLT and (X, B′) is KLT with B ≡S B′

and α : X 99K X′ is a minimal model of (X, B′) → S , then it is not automati-
cally a minimal model of (X, B)→ S because (X′, α∗B) might be only LC (log
canonical) but not necessarily DLT. The solution is the following: Once we
show the existence of minimal models of pairs with the KLT version BCHM
condition, we can show the termination of MMP with scaling, and then we
may assume that α : X 99K X′ is obtained by a (KX + B′)-MMP which is also
a (KX + B)-MMP. Then in this case (X′, α∗B) is DLT and hence is a minimal
model of (X, B)→ S . □

Remark 3.1.4 Another advantage of the BCHM condition is that it is pre-
served by MMP. For the KLT version, this is simply because the KLT condition
and the bigness of B are both preserved by MMP.

For the DLT version, consider a morphism (X, B)→ S satisfying the BCHM
condition, suppose that α : X 99K X′ is obtained by several steps of MMP and
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(X′, B′) is the induced pair. Write B = A+ E + ⌞B⌟ as in the BCHM condition.
Then B′ = α∗A + α∗E + ⌞α∗B⌟ but α∗A is no longer relatively ample. Pick
a general relatively ample effective R-divisor A′ on X′ and take a sufficiently
small positive real number ϵ such that A − ϵα−1

∗ A′ is relatively ample. Take a
general effective R-divisor E1 ∼R A − ϵα−1

∗ A′ such that (X, E1 + E + ⌞B⌟) is
DLT. By taking ϵ sufficiently small, we may assume that α : X 99K X′ is also
obtained by a (KX +E1+E+⌞B⌟)-MMP, which implies that (X′, α∗E1+α∗E+
⌞α∗B⌟) is DLT. Note that

B′ − (α∗E1 + α∗E + ⌞α∗B⌟) = α∗A − α∗E1 ≡S ϵA′

is relatively ample. Moreover, ⌞α∗E1 +α∗E⌟ = 0 by the construction of E1. So
(X′, B′)→ S satisfies the BCHM condition.

Remark 3.1.5 For the existence of PL flips and the special termination of
MMP with scaling, the KLT version makes no sense. It is natural to run MMP
within the KLT category, but the point in extending to the DLT category is that,
for DLT pairs, we can consider the restriction on the integral part ⌞B⌟, which
forges the path towards inductive arguments on dimensions.

From now on, our goal is to prove the following assertions under the DLT
version BCHM condition. Combining all these assertions, all theorems are
proved by induction on dimensions.

(1) (Theorem 3.3.1) The existence of flips in dimension n−1 and the termina-
tion of MMP with scaling in dimension n−1 imply the special termination
of MMP with scaling in dimension n.

(2) (Theorem 3.4.1) The existence of PL flips in dimension n, the special
termination of MMP with scaling in dimension n, and the nonvanishing
theorem for a morphism (X, B) → S satisfying the BCHM condition in
dimension n imply the existence of minimal models for the morphism
(X, B)→ S .

(3) (Theorem 3.4.1) The existence of PL flips in dimension n and the special
termination of MMP with scaling in dimension n imply the existence of
flips in dimension n.

(4) (Theorem 3.2.1) The existence and finiteness of minimal models in dimen-
sion n − 1 imply the existence of PL flips in dimension n.

(5) (Theorem 3.4.6) The existence of minimal models in dimension n implies
the finiteness of minimal models in dimension n.

(6) (Corollary 2.10.9) The finiteness of minimal models in dimension n im-
plies the termination of MMP with scaling in dimension n.
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(7) (Theorem 3.5.1) The existence of PL flips in dimension n, the special
termination of MMP with scaling in dimension n, and the existence and
finiteness of minimal models for pairs (X, B) with KX + B relatively big in
dimension n imply the nonvanishing theorem in dimension n.

Remark 3.1.6 If KX+B is relatively big, then the nonvanishing theorem auto-
matically holds. Therefore, (3) is a special case of (2). (3) is originally proved
by Shokurov, which is the origin of the induction method on dimensions.

In (4), Hacon and McKernan showed the existence of flips in all dimensions
by induction on dimensions. Before that, the only proof of the existence of flips
used the classification of singularities, which is only available in dimension 3.

The proof of (4) needs the extension theorem of pluricanonical forms. The
basepoint-free theorem is also an extension theorem for pluricanonical forms,
but here we need to use a much more powerful extension theorem.

3.2 PL flips

In this section, we introduce the proof of the existence of PL flips due to Hacon
and McKernan ([38]). Recall that a PL contraction f : (X, B) → S is a small
contraction from a Q-factorial DLT pair such that −P is f -ample for some
irreducible component P of ⌞B⌟.

Theorem 3.2.1 (Existence of PL flips) Let f : (X, B)→ S be an n-dimensional
PL contraction. Suppose that, under the BCHM condition, the existence and
finiteness of minimal models in dimension n − 1 hold, then the flip of f exists.

This theorem is a pillar of new developments in the minimal model theory,
it triggered the recent major redevelopment of the minimal model theory.

The existence of flips is a special case of the finite generation of canonical
rings, but we need to prove it first, then we are able to launch the MMP, and
then the finite generation theorem can be proved.

Let us describe the sketch of the proof. A PL flip is the flip in the special
situation that f : (X, B) → S is a PL contraction. We may assume that S is
affine, (X, B) is PLT (purely log terminal), and Y = ⌞B⌟ is irreducible. We may
assume that B is a Q-divisor after perturbing the coefficients.

Since f is a small birational morphism, the restriction f |Y to the divisor is
also a birational morphism and the BCHM condition holds on Y .

In order to show the existence of the flip, it suffices to show that R(X/S ,KX+

B) is finitely generated. The subadjunction formula (KX + B)|Y = KY + BY
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defines BY and (Y, BY ) is KLT. Since dim Y = n− 1, R(Y/S ,KY + BY ) is finitely
generated by the inductive hypothesis.

If the natural ring homomorphism R(X/S ,KX + B) → R(Y/S ,KY + BY ) is
surjective, then we can finish the proof. However, as KX + B is negative with
respect to f , we cannot establish the vanishing of higher cohomologies, so
this is in general not surjective. In other words, pluricanonical forms on Y are
not necessarily extendable to X. For this reason, a key point in the proof is
to determine the set of pluricanonical forms on Y that are extendable to X. In
order to do this, we will make full use of (n − 1)-dimensional MMP and the
vanishing theorem for multiplier ideal sheaves.

Fix a positive integer m0 such that m0B is an integral divisor. Denote (KX +

B)|Y = KY + BY . For a positive integer m, the restriction map

H0(X,mm0(KX + B))→ H0(Y,mm0(KY + BY ))

is not surjective in general.
Applying the extension theorem, we can determine the image of this map

and express it as the space of pluricanonical forms H0(Y ′,m(KY ′ + BY ′,m)) of
another pair (Y ′, BY ′,m) different from (Y, BY ). Here the point is that the new va-
riety Y ′ can be chosen independent of m. For this purpose, we use the extension
theorem for pluricanonical forms.

By blowing up X, we can resolve the base locus of the pluricanonical linear
system |mm0(KX + B)|. However, this cannot be done simultaneously for all m,
so as m increases, we get an infinite tower of blowups over X, that is, an inverse
system of algebraic varieties. This inverse system is equivalent to considering
Shokurov’s b-divisor ([130]) in the divisor level, which is hard to handle. This
concept is similar to Zariski’s Riemann space.

However, by applying the extension theorem, b-divisors are not needed, in-
stead it suffices to consider an infinite sequence of Q-divisors BY ′,m on a fixed
variety Y ′. The blowups X′m → X depend on m, but the restriction Y ′ → Y to
Y is independent of m. So we may consider an infinite sequence of boundaries
BY ′,m instead of the infinite tower of algebraic varieties. In general the limit BY ′

of BY ′,m is an R-divisor. This is one reason that we must formulate the MMP
for R-divisors.

The minimal model theory in dimension up to n − 1 can be applied to Y ′

and divisors on it, then by the existence and finiteness of minimal models, this
limit can be obtained within finite steps, and there exists a positive integer m
such that BY ′ = BY ′,m.
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3.2.1 Restriction of canonical rings to divisors

First, we show the following lemma.

Lemma 3.2.2 Let R =
⊕∞

m=0 Rm be a sheaf of graded OS -algebras such that
R0 = OS .

(1) R is a finitely generated graded OS -algebra if and only if the ideal R+ =⊕
m>0 Rm is a finitely generated R-module.

(2) If R is a finitely generated graded OS -algebra, then the subalgebra

R(m1) =

∞⊕
m=0

Rmm1

is a finitely generated graded OS -algebra. Here m1 is any fixed positive
integer. Moreover, the converse holds if R is a domain.

Proof (1) The homogeneous generators of the graded OS -algebra R are the
same as the homogeneous generators of the ideal R+.

(2) Suppose that R is a finitely generated algebra, and take x1, . . . , xt to be
homogeneous generators. Then R is generated by

∏t
i=1 xdi

i (0 ≤ di < m1) as an
R(m1)-module. Therefore, R is a finitely generated R(m1)-module. Since R+ is a
direct sum of R(m1)-modules M j =

⊕∞

m=0 R j+mm1 (1 ≤ j ≤ m1) and is a finitely
generated R-module, it is also a finitely generated R(m1)-module. In particular,
R(m1)
+ = Mm1 is a finitely generated R(m1)-module, and hence R(m1) is a finitely

generated graded OS -algebra.
Conversely, suppose that R(m1) is a finitely generated algebra and R is a do-

main. Then R(m1)
+ is a finitely generated R(m1)-module where R(m1) is a Noethe-

rian ring. If M j , 0 for some j, take 0 , x ∈ M j, then the multiplication map
xm1−1 : M j → R(m1)

+ is injective. This implies that M j is a finitely generated
R(m1)-module. Therefore, R+ is a finitely generated R(m1)-module, which is also
a finitely generated R-module. □

For a PL contraction f : (X, B) → S , the existence of the flip is equivalent
to that the sheaf of rings

R =
∞⊕

m=0

f∗OX(⌞m(KX + B)⌟)

is finitely generated over OS . Fix a positive integer m0 such that m0(KX + B) is
an integral divisor, the latter is equivalent to the finite generation of

R(m0) =

∞⊕
m=0

f∗OX(mm0(KX + B)).
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Since −Y is f -ample, it is proportional to −(KX + B), hence this is equivalent
to the finite generation of

R′ =
∞⊕

m=0

f∗OX(mY).

Lemma 3.2.3 For any positive integer m, the reflexive sheaves OX(mY) and
OY (mY) on X and Y are well defined, and satisfy the exact sequence

0→ OX((m − 1)Y)→ OX(mY)→ OY (mY)→ 0.

Proof Note that Y is just Q-Cartier, so these sheaves are not invertible in
general. For any point x ∈ X, take a sufficiently small neighborhood Xx and
take the index 1 cover πx : X̃x → Xx of Y . Then Ỹx = π

−1
x (Y) is Cartier and

we can define invertible sheaves OX̃x
(mỸx) and OỸx

(mỸx) satisfying the exact
sequence

0→ OX̃x
((m − 1)Ỹx)→ OX̃x

(mỸx)→ OỸx
(mỸx)→ 0.

Here the first homomorphism is the multiplication map of the canonical section
π∗xs ∈ Γ(X̃x,OX̃x

(Ỹx)). Take the invariant parts with respect to the Galois group
Gal(X̃x/Xx), we get the required exact sequence. □

Since −Y is f -ample, in the exact sequence

0→ f∗OX((m − 1)Y)→ f∗OX(mY)→ f∗OY (mY),

the last homomorphism is not surjective in general.

Lemma 3.2.4 If the restricted algebra

R′Y =
∞⊕

m=0

Im( f∗OX(mY)→ f∗OY (mY))

is finitely generated, then R′ is finitely generated.

Proof Take s1, . . . , sk ∈ R′ to be the generators of R′Y on X, then R′ is gener-
ated by s, s1, . . . , sk. □

Applying Lemma 3.2.2 again, we can reduce the problem to the finite gen-
eration of

RY =

∞⊕
m=0

Im( f∗OX(mm0(KX + B))→ f∗OY (mm0(KY + BY ))).

Here KY + BY = (KX + B)|Y . The restriction map

H0(X,mm0(KX + B))→ H0(Y,mm0(KY + BY ))
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is not surjective. The idea is to replace this image by the space of pluricanonical
forms with respect to a new boundary smaller than BY .

First, we construct a tower of log resolutions:

Proposition 3.2.5 ([38]) Let f : (X, B) → S be a small contraction from a
Q-factorial PLT pair. Assume that S is affine, Y = ⌞B⌟ is irreducible, −Y is f -
ample, and B is a Q-divisor. Take a positive integer m0 such that the coefficients
of m0(KX + B) are integers. Then for any positive integer m, there exists a log
resolution µm : Xm → X and a Q-divisor B′m on Xm satisfying the following
conditions:

(1) Write µ∗m(KX + B) = KXm + Bm and Ym = µ
−1
m∗Y, then the irreducible com-

ponents of B+m − Ym are disjoint. Here B+m is the positive part of Bm, that is,
we can write Bm = B+m − B−m, where B+m, B

−
m are effective divisors without

common irreducible component.
(2) mm0B′m is an integral divisor such that the inequality Ym ≤ B′m ≤ B+m hold.
(3) A general element in |mm0(KXm + B′m)| does not contain any LC center of

(Xm, ⌜B′m⌝).
(4) The natural map

H0(Xm,mm0(KXm + B′m))→ H0(Xm,mm0(KXm + B+m))

� H0(X,mm0(KX + B))

is bijective.
(5) Ym is isomorphic to a fixed variety Y ′ and µm induces a fixed morphism
µY : Y ′ → Y.

(6) Write (KXm+B′m)|Ym = KY ′+BY ′,m, then BY ′,m satisfy the following convexity
on m:

m1BY ′,m1 + m2BY ′,m2 ≤ (m1 + m2)BY ′,m1+m2 .

(7) The limit BY ′ = limm→∞ BY ′,m exists as an R-divisor, and (Y ′, BY ′ ) is KLT.

Proof Take a log resolution µ : (X′, B′)→ (X, B), write µ∗(KX+B) = KX′+B′

and Y ′ = µ−1
∗ Y , we may assume that the irreducible components of (B′)+ − Y ′

are disjoint from each other by the argument of Proposition 1.10.7. We will
construct µm by blowing up X′. To make the notation simpler, we use the same
notation as X′ to denote the variety after blowing up.

Fix m and take a general element D ∈ |mm0(KX + B)|. As f |Y is birational,
D does not contain Y . D induces an element D′ ∈ |mm0(KX′ + (B′)+)|. If D′

and (B′)+ have a common irreducible component, we replace them by D′ −
min{D′,mm0(B′)+} and (B′)+−min{D′/mm0, (B′)+}. Here note that min{D′,mm0(B′)+}
is contained in the fixed part of the linear system, hence the relation D′ ∈
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|mm0(KX′ + (B′)+)| is preserved. The new D′ and (B′)+ have no common irre-
ducible component.

Next, we show that, after replacing X′ by blowups and replace D′, we may
assume that D′ contains no LC centers of (X′, ⌜(B′)+⌝). By the construction
of µ, LC centers of (X′, ⌜(B′)+⌝) are irreducible components of (B′)+ and ir-
reducible components of Y ′ ∩ ((B′)+ − Y ′). The former are already handled,
but now consider the case that D′ contains an irreducible component Z of
Y ′ ∩ ((B′)+ − Y ′). In this case, we blow up X′ along Z, and keep blowing up
X′ until the irreducible components of (B′)+ − Y ′ are disjoint. Subtract certain
multiples of exceptional divisors which are the common irreducible compo-
nents of the pullback of D′ and the new (B′)+. If D′ still contains some irre-
ducible component of Y ′ ∩ ((B′)+ − Y ′), repeat this process. Note that in each
step of this process the blowup center is a prime divisor on Y ′, hence Y ′ is not
changed. On the other hand, in each step of this process, at least one coefficient
of ((B′)+ − Y ′)|Y ′ is decreased by at least 1

mm0
. Hence this process stops after

finitely many times, and eventually D′ contains no irreducible component of
Y ′ ∩ ((B′)+ − Y ′).

In this way we constructed a log resolution µm : Xm → X. Take B′m =
(B′)+. Here note that (B′)+ is obtained by subtracting redundant irreducible
components. (1), (2), and (3) directly follow from the construction. As we
only subtract the fixed part of D′ from B+m and B−m is µm-exceptional, we have
(4). (5) is from the fact that, in the beginning µ : X′ → X does not depend on
m, and the blowups after this are along divisors on Y ′. (6) is from the natural
homomorphism

H0(X,m0m1(KX + B)) ⊗ H0(X,m0m2(KX + B))

→ H0(X,m0(m1 + m2)(KX + B)).

For (7), the limit exists by the inequality in (6), and the last assertion follows
since BY ′,m ≤ (B+m−Ym)|Ym and (Ym, (B+m−Ym)|Ym ) is KLT as (X, B) is PLT, where
(B+m − Ym)|Ym is a divisor on Y ′ independent of m by the construction. □

Next, we apply the extension theorem:

Theorem 3.2.6 Under the setting of Proposition 3.2.5, the restriction map

H0(Xm, lmm0(KXm + B′m))→ H0(Y ′, lmm0(KY ′ + BY ′,m))

is surjective for any positive integer l.

Proof Let us check the conditions of the extension theorem. First, ⌞B′m⌟ = Y ′

and (Xm, B′m) is PLT.
(1) Since f ◦ µ is an isomorphism on the generic points of Xm and Y ′, we
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can write B′m − Y ′ as a sum of an ample Q-divisor and an effective Q-divisor
whose support does not contain Y ′.

(2) A general element in |mm0(KXm +B′m)| does not contain any LC center of
the pair (Xm, ⌜B′m⌝). □

3.2.2 The existence of PL flips

In this subsection, we prove the existence of PL flips.
Let us recall some symbols. For a divisor D on a normal algebraic variety X,

its fixed part Fix(D) and movable part Mov(D) are defined as the following:

|D| = {D′ | D ∼ D′ ≥ 0},

Fix(D) = inf |D|,

Mov(D) = D − Fix(D).

Here the infimum of divisors is defined by taking the infimum of each coeffi-
cient. Note that if X is not projective, then the complete linear system |D| is not
necessarily finite-dimensional, but the fixed part is well defined as a divisor.

Proof of Theorem 3.2.1 By the finiteness of minimal models, for sufficiently
large m, the pairs (Y ′, BY ′,m) have the same canonical model Z. Here note that
f |Y ′ : Y ′ → S is birational to its image, so the KLT version BCHM condition
automatically holds.

Taking a sufficiently high log resolution Y ′′ → Y ′ of (Y ′, BY ′ ), we may as-
sume that the induced morphism Y ′′ → Z is a morphism over S . In the fol-
lowing, we may replace Y ′ by Y ′′. This is equivalent to taking “simultaneous
resolution of singularities”.

For positive integers m, l, denote

P̃m = Mov(mm0(KXm + B+m)),

Pm = P̃m|Y ′ ,

P̃l,m = Mov(lmm0(KXm + B′m)),

Pl,m = Mov(lmm0(KY ′ + BY ′,m)).

Since Y ′ dominates Z which is the canonical model of (Y ′, BY ′m ), there ex-
ists a positive integer lm such that Plm,m is free. After further blowups, we may
assume that Mov(lmm0(KXm + B′m)) is free for 1 ≤ l ≤ lm. According to Theo-
rem 3.2.6, for 1 ≤ l ≤ lm,

Pl,m = Mov(lmm0(KY ′ + BY ′,m)) = P̃l,m|Y ′ .

Since P̃1,m = P̃m, P1,m = Pm. We have

lmPm = lmP1,m ≤ Plm,m ≤ Plmm.
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Since

(KXm + Bm)|Y ′ = KY ′ + B̃Y ′ = µ
∗
Y (KY + BY ),

we get

Pm1 + Pm2 ≤ Pm1+m2 ≤ (m1 + m2)m0(KY ′ + B̃Y ′ ),

hence the limit P = limm→∞ Pm/m defines an R-divisor on Y ′. Note that
Plm,m/lmmm0 is the pullback of the log canonical divisor of the canonical model
of (Y ′, BY ′m ) and

lim
m→∞

Pm

m
= lim

m→∞

Plm,m

lmm
,

hence P/m0 is the pullback of the log canonical divisor of the canonical model
of (Y ′, BY ′ ). Therefore, P is semi-ample, that is, it is a linear combination of
free divisors with positive real coefficients.

In the following, we will show that there exists a positive integer m1 such
that P = Pm1/m1. If this is proved, then for any positive integer l, lPm1 = Plm1 ,
and hence⊕

l≥0

H0(Y ′, lPm1 )

�
⊕

l≥0

Im(H0(X, lm0m1(KX + B))→ H0(Y, lm0m1(KY + BY )))

is finitely generated, and the proof of the existence of PL flips is finished.

Lemma 3.2.7 For any positive integers m,m′,

Mov(⌜
m′Plm,m

lmm
− B̃Y ′⌝) ≤ Pm′ .

Therefore, after taking the limit,

Mov(⌜m′P − B̃Y ′⌝) ≤ Pm′ .

Proof Take a general effective Q-divisor D ≡ m′P̃lm,m/lmm. That is, take a
sufficiently large and sufficiently divisible positive integer N, take D to be a
general element in |Nm′P̃lm,m/lmm| dividing by N. Also take a general effective
Q-divisor

D′ ≡ ⌜
m′P̃lm,m

lmm
− Bm⌝ − (

m′P̃lm,m

lmm
− Bm).

Take J to be the multiplier ideal sheaf of (Xm,D + D′). Since Plm,m = P̃lm,m|Ym
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is free, Ym does not intersect the support of OXm/J. As

⌜
m′P̃lm,m

lmm
− Bm⌝ − (KXm + D + D′) ≡ −µ∗(KX + B)

is relatively nef and relatively big,

H1(Xm, J(⌜
m′P̃lm,m

lmm
− Bm⌝)) = 0.

Hence

H0(Xm, ⌜
m′P̃lm,m

lmm
− (Bm − Ym)⌝)→ H0(Y ′, ⌜

m′Plm,m

lmm
− B̃Y ′⌝)

is surjective. On the other hand, since

µm∗(⌜
m′P̃lm,m

lmm
− (Bm − Ym)⌝) ≤ m′m0(KX + B),

we get

Mov(p∗⌜
m′P̃lm,m

lmm
− (Bm − Ym)⌝) ≤ q∗P̃m′ .

Here if m > m′, then p = id and q is the induced morphism Xm → Xm′ ; if
m ≤ m′, then p is the induced morphism Xm′ → Xm and q = id. This proves
the former assertion by restricting on Y ′. For the latter, just take the limit. □

Now, go back to the proof of the existence of PL flips. First, suppose that P
is a Q-divisor. In this case, there exists a positive integer m1 such that m1P is
Cartier and free. Then

m1P ≤ Mov(⌜m1P − B̃Y ′⌝) ≤ Pm1 ≤ m1P.

Hence m1P = Pm1 .
Next, consider the case that P is not a Q-divisor. In this case, we can use

positive real numbers p j and free Cartier divisors L j to express P =
∑

j p jL j.
We may also assume that the set of p j is Q-linearly independent. Take an
effective divisor M containing supports of all L j, and take a sufficiently small
real number ϵ > 0 such that ⌞B̃Y ′ + ϵM⌟ ≤ 0. Suppose that at least one p j is
not rational, then there exists a positive integer m and a free Cartier divisor L
such that

mP − ϵM < L < mP + ϵM

and L ̸≤ mP. Then

L ≤ ⌜mP + ϵM − B̃Y ′ − ϵM⌝,
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which implies that

L ≤ Mov(⌜mP − B̃Y ′⌝) ≤ Pm ≤ mP,

a contradiction. □

Remark 3.2.8 (1) In this way, the existence of flips can be proved in any
dimension. It deeply impressed me when recalling that the proof of the
existence of flips in dimension 3 was very difficult ([102]). So this is a
big success of the formulation of the problem by using log pairs. In the
above argument, the basepoint-free theorem plays an important role in the
background.

(2) P is equivalent to the numerically movable part of the Zariski decomposi-
tion. In [60], assuming the existence of Zariski decomposition in the sense
that the numerically movable part is nef, even if the numerically mov-
able part might be an R-divisor, it can be shown that the canonical ring is
finitely generated and the numerically movable part is indeed a Q-divisor.
The technique in that proof might be applied here, but the proof introduced
here uses the idea of “saturation” due to Shokurov ([130]).

3.3 The special termination

The special termination is an essential idea for applying induction on dimen-
sions.

The definition of DLT pairs is suitable for the inductive argument on dimen-
sions, as an irreducible component in the boundary with coefficient 1 deter-
mines a DLT pair of one dimension lower. The special termination theorem by
Shokurov is essential in the discussion of the termination of MMP by induc-
tion on dimensions. In this section, we show the special termination of MMP
with scaling.

The log version, as the generalization of the nonlog version, should be more
complicated originally. For example, log terminal singularities are more com-
plicated than terminal singularities. On the other hand, the log version has more
freedom, because we can perturb the coefficients of the boundary. Also if there
is an irreducible component in the boundary with coefficient 1, we can use the
subadjunction formula to get a DLT pair of one dimension lower. In addition,
for a fixed algebraic variety X, if the coefficients of B increase, then the con-
dition that (X, B) is log terminal gets stronger, and the singularities of X gets
better.

First, let us recall the statement of the special termination of MMP with
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scaling: Suppose that f : (X, B) → S and f : (X, B′) → S satisfy the BCHM
condition. Assume that ⌞B′⌟ ≥ ⌞B⌟ and KX + B′ is relatively nef. For an MMP
on f : (X, B) → S with scaling of B′ − B, starting from (X0, B0) = (X, B), we
get an infinite sequence of flips

αm : (Xm, Bm) 99K (Xm+1, Bm+1), m = 0, 1, 2, . . . .

Here Bm+1 = αm∗Bm. Then there exists a positive integer m0 such that for any
m ≥ m0, αm is isomorphic in a neighborhood of the integral part ⌞Bm⌟ of the
boundary. That is,

Exc(αm) ∩ Supp ⌞Bm⌟ = ∅.

Theorem 3.3.1 (Special termination theorem) Under the BCHM condition,
suppose that the existence of flips in dimension n − 1 and the termination of
MMP with scaling in dimension n − 1 hold, then the special termination of
MMP with scaling in dimension n holds.

Remark 3.3.2 (1) The special termination theorem was originally proved by
Shokurov ([128]). It forged the path of proving the existence of minimal
models by induction on dimensions.

(2) As we will discuss in Section 3.4, the assumption above implies the exis-
tence of Q-factorialization of KLT pairs in dimension n−1 (see Lemma 3.4.5
or Corollary 3.6.9). Indeed, a Q-factorialization is a minimal model of cer-
tain birational morphism. Assuming the existence of flips in dimension
n − 1 and the termination of MMP with scaling in dimension n − 1, the
existence of minimal models in dimension n − 1 follows.

Proof Fix any irreducible component Z0 of Z = ⌞B⌟. Given an MMP with
scaling consisting of flips, it suffices to show that the MMP is isomorphic in a
neighborhood of Z0 after finitely many steps.

Recall that we can write B = A + E + Z and B′ = A′ + E′ + Z′, where
Z′ = ⌞B′⌟. Take a sufficiently small real number t such that A + t(Z − Z0) and
A′ + t(Z′ − Z0) are relatively ample. Take sufficiently general relatively ample
effective R-divisors A0, A′0 such that A0 ≡ A+ t(Z−Z0) and A′0 ≡ A′+ t(Z′−Z0).
Then (X, A0+E+ (1− t)(Z−Z0)+Z0) and (X, A′0+E′+ (1− t)(Z′−Z0)+Z0) are
PLT. As B ≡ A0+E+(1− t)(Z−Z0)+Z0, B′ ≡ A′0+E′+(1− t)(Z′−Z0)+Z0, and
⌞A0+E+(1−t)(Z−Z0)+Z0⌟ = ⌞A′0+E′+(1−t)(Z′−Z0)+Z0⌟ = Z0, after replacing
A, A′ by A0, A′0 and replacing E, E′ by E+(1−t)(Z−Z0), E′+(1−t)(Z′−Z0), we
may assume that the pairs (X, B) and (X, B′) are PLT in the beginning. Denote
Zm = ⌞Bm⌟.

The sequence of flips of (X, B) induces birational maps α′m : Zm 99K Zm+1.
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Note that α′m might contract divisors on Zm and might also extract new divisors
on Zm+1.

The set of the coefficients of B in the pair (X, B) is a finite set Coeff(B) ⊂
[0, 1]. So Coeff(Bm) is a fixed set. However, the subadjunction formula (KXm +

Bm)|Zm = KZm + BZm defines an R-divisor BZm on Zm, while the set Coeff(BZm )
might vary as m varies.

Define the set Σ ⊂ [0, 1] as the following:

Σ = {x ∈ [0, 1] | x = 1 −
1
r
+

∑
i

ribi

r
, bi ∈ Coeff(B), r ∈ Z>0, ri ∈ Z≥0}.

Then by the subadjunction formula, Coeff(BZm ) ⊂ Σ for any m.
Here recall the following definition:

Definition 3.3.3 A set T ⊂ R satisfies the ascending chain condition = ACC
(respectively, descending chain condition =DCC) if for any sequence {xn} ⊂ T
satisfying xn ≤ xn+1 (respectively, xn ≥ xn+1) for all n, there exists n0 such that
xn = xn+1 for n ≥ n0.

Remark 3.3.4 The ACC and DCC are finiteness conditions. For example,
finite sets satisfy both the ACC and the DCC.

In higher dimensional algebraic geometry, it is expected that certain natu-
rally defined sets satisfy the ACC or the DCC. For example, the set of “mini-
mal log discrepancies” (MLDs) is expected to satisfy the ACC, which is con-
sidered as a solution for the termination of flips. This reflects hidden patterns
in the world of algebraic varieties, and there are many unsolved problems. We
refer to [12].

Lemma 3.3.5 The set Σ satisfies the DCC. Moreover, for any ϵ > 0, the set
Σ ∩ [0, 1 − ϵ] is finite.

Proof Consider x = 1− 1
r +

∑
i

ribi
r ∈ Σ. Since bi are in a finite set, if x ≤ 1− ϵ,

then it is easy to see that there are only finitely many possible values for r
and ri. Therefore, the only accumulation point of Σ is 1, which concludes the
DCC. □

For any positive number m, take a common log resolution g : Y → Xm and
g′ : Y → Xm+1 of (Xm, Bm) and (Xm+1, Bm+1) in strong sense. Write KY + C =
g∗(KXm + Bm) and KY + C′ = (g′)∗(KXm+1 + Bm+1). Write C =

∑
ciCi and

C′ =
∑

c′iCi into prime divisors, then ci ≥ c′i for all Ci, and ci > c′i for divisors
supported over the exceptional set of Xm 99K Xm+1 (cf. Theorem 2.5.6).

Take Z′ ⊂ Y to be the common strict transform of Zm and Zm+1 and take
C̄i = Ci ∩ Z′, then KZm + BZm = (g|Z′ )∗(KZ′ +

∑′ ciC̄i) and KZm+1 + BZm+1 =

(g′|Z′ )∗(KZ′ +
∑′ c′iC̄i). Here the sum

∑′ runs over all Ci , Z′.
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Since G := g∗(KXm + Bm) − (g′)∗(KXm+1 + Bm+1) > 0 with Supp(G) =
g−1(Exc(αm)), we have GZ := G|Z′ = (g|Z′ )∗(KZm + BZm ) − (g′|Z′ )∗(KZm+1 +

BZm+1 ) > 0 with Supp(GZ) = g−1(Exc(αm)) ∩ Z′.
As (Zm, BZm ) and (Zm+1, BZm+1 ) are KLT, we may assume that g is a very log

resolution of (Zm, BZm ) and (Zm+1, BZm+1 ). For each m, consider the number

dm =
∑
a∈Σ

#{ci | ci > a} +
∑
a∈Σ

#{ci | ci ≥ a}.

Here we consider all coefficients appearing in
∑

ciC̄i. Note that dm is a well-
defined nonnegative integer since the sum only considers finitely many a ∈
Σ ∩ [0,max{ci}] as ci < 1, and the definition does not depend on the choice
of very log resolutions since we only consider nonnegative ci. As ci ≥ c′i , we
know that dm ≥ dm+1. If Zm+1 contains a divisor P which is not a divisor on
Zm, then P comes from some C̄i, where Ci is supported over the exceptional
set of Xm 99K Xm+1. So this means that ci > c′i ∈ Σ, and in this case we have
dm > dm+1. If Zm contains a divisor P which is not a divisor on Zm+1, then
again P comes from some C̄i, where Ci is supported over the exceptional set
of Xm 99K Xm+1. So this means that Σ ∋ ci > c′i , and in this case we again have
dm > dm+1.

In this way, we can see that α′m : Zm 99K Zm+1 is isomorphic in codimension
1 after removing finitely many steps.

Since A, A′ are general, their restrictions to Z (for the strict transform of Z
after finitely many steps from the beginning) are relatively big. Since in finitely
many steps from the beginning there might be new divisors appearing on Z, the
assumption on the generality is necessary.

By the subadjunction formula, we may write (KX + B)|Z = KZ + BZ and
(KX + B′)|Z = KZ + B′Z . Then the pairs (Z, BZ) and (Z, B′Z) are KLT, BZ ≥

A|Z , and B′Z ≥ A′|Z . So they satisfy the BCHM condition, except that Z is not
necessarily Q-factorial. Here we take h : Z̃ → Z to be a Q-factorialization,
denote B̃ = h−1

∗ BZ , B̃′ = h−1
∗ B′Z , and f̃ = f ◦h. Then we can consider the MMP

on f̃ : (Z̃, B̃) → S with scaling of B̃′ − B̃. By the inductive hypothesis, in this
MMP, flips exist and terminate.

This MMP should match the pullback of the MMP for f : (X, B) → S to Z̃,
so the original MMP terminates in a neighborhood of Z. However, the pullback
of each step of the MMP for f : (X, B)→ S on Z̃ corresponds to a composition
of several steps of MMP, so we need a more detailed discussion. Let us explain
this.

Suppose that the flip αm : (Xm, Bm) 99K (Xm+1, Bm+1) is the composition
of small birational maps ϕm : Xm → S m and ϕ+m : Xm+1 → S m and denote
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tm = min{t | KXm+Bm+ tm(B′m−Bm) is nef over S }, then KXm+Bm+ tm(B′m−Bm)
is numerically trivial over S m.

Consider the induced map α′m : Zm 99K Zm+1, we can construct Q-factorializations
hm : Z̃m → Zm and hm+1 : Z̃m+1 → Zm+1, and a decomposition into a sequence
of flips over S m:

Z̃m = Zm,0 99K Zm,1 99K · · · 99K Zm,l = Z̃m+1

by induction on m.
Indeed, suppose that hm is given, take B̃Z,m = h−1

m∗BZm , and run an MMP with
scaling for

ϕm ◦ hm : (Z̃m, B̃Z,m)→ S m.

Here the scale can be appropriately taken to be a relatively ample R-divisor
over S m. By the inductive hypothesis, this MMP terminates to a minimal model
(Z̃m+1, B̃Z,m+1) → S m. Since KZm+1 + BZm+1 is ample over S m, it is the canonical
model of Z̃m+1 and induces a morphism hm+1 : Z̃m+1 → Zm+1. Hence we get the
required decomposition. Here as Zm and Zm+1 are isomorphic in codimension
1, all models in the above MMP are isomorphic in codimension 1 with Zm+1,
and in particular, it consists of flips and hm+1 is a Q-factorialization.

Since KXm + Bm + tm(B′m − Bm) is numerically trivial over S m, the induced
divisors KZm,i + Bm,i + tm(B′m,i − Bm,i) are all numerically trivial over S m. Hence
it is easy to check that the sequence

Z̃ = Z̃0 = Z0,0 99K Z0,1 99K · · · 99K Z0,l = Z̃1 = Z1,0 99K Z1,1 99K · · ·

is indeed an MMP on f̃ : (Z̃, B̃) → S with scaling of B̃′ − B̃. Here Bm,i, B′m,i
are the strict transforms of B̃, B̃′. By the inductive hypothesis, this MMP ter-
minates, which implies that the original MMP terminates in a neighborhood of
Z.

Indeed, after finitely many steps, Z̃m does not change, which means that
KZ̃m
+ B̃Z,m is nef over S m, and then KZm + BZm is nef over S m. On the other

hand, −(KZm + BZm ) is ample over S m, so −(KZm + BZm ) is both numerically
trivial and ample over S m, which implies that Zm → S m does not contract any
curve on Zm. Similarly, KZm+1 +BZm+1 is both numerically trivial and ample over
S m, which implies that Zm+1 → S m does not contract any curve on Zm+1. If
Zm intersects Exc(αm), then Zm, as a divisor on Xm, is ample over S m. Hence
−Zm+1 is ample over S m, which contradicts the fact that Zm+1 → S m does not
contract any curve on Zm+1. This implies that the original MMP terminates in
a neighborhood of Z. □

Remark 3.3.6 Without assuming the BCHM condition, we have the fol-
lowing special termination: Suppose that the existence of flips in dimension
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n − 1 and the termination of MMP in dimension n − 1 hold, then the spe-
cial termination in dimension n holds. That is, given a projective morphism
f : (X, B) → S from a DLT pair, for an infinite sequence of flips over S start-
ing from (X0, B0) = (X, B):

αm : (Xm, Bm) 99K (Xm+1, Bm+1), m = 0, 1, 2, . . . ,

where Bm+1 = αm∗Bm, there exists a positive integer m0 such that for any
m ≥ m0, αm is isomorphic in a neighborhood of the integral part ⌞Bm⌟ of
the boundary. We will not use this fact in this book, please refer to [27].

3.4 The existence and finiteness of minimal models

In this section, we show the existence and finiteness of minimal models by
induction on dimensions.

Theorem 3.4.1 (Existence of minimal models) Under the BCHM condition,
suppose that the existence of PL flips in dimension n and the special termina-
tion of MMP with scaling in dimension n hold, and the nonvanishing theorem
holds for a morphism (X, B)→ S in dimension n, then the existence of minimal
models holds for the morphism (X, B)→ S .

Remark 3.4.2 As can be seen from the proof below, the BCHM condition
is not essential in this proof. To be more accurate, we can prove the following
assertion:

Let (X, B) be a KLT pair consisting of an n-dimensional Q-factorial alge-
braic variety and an effective R-divisor, and let f : X → S be a projective
morphism to a quasi-projective algebraic variety. Assume the following:

(1) (Existence of PL flips) For any n-dimensional Q-factorial DLT pair (X′, B′)
with a PL contraction (i.e. a small contraction with respect to which there
is a prime divisor in ⌞B′⌟ which is relatively negative), the flip always
exists.

(2) (Special termination) Any sequence of MMP with scaling starting from
an n-dimensional Q-factorial DLT pair (X′, B′) is isomorphic in neighbor-
hoods of strict transforms of ⌞B′⌟ after finitely many steps.

(3) (Nonvanishing theorem) For the given pair (X, B), there exists an effective
R-divisor D such that KX + B ≡S D.

Then there exists a minimal model of the given morphism f : (X, B)→ S .
The existence of PL flips holds by summarizing all results proved in this

chapter. The special termination can be proved assuming all statements in
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lower dimensional minimal model theory (Remark 3.3.6). Therefore, if one
wants to try to prove the existence of minimal models without the BCHM con-
dition, proving the nonvanishing theorem is a key point.

Here we will follow the proof of Birkar ([13]) which modifies that of [16].
First, recall the definition of minimal models:

Definition 3.4.3 Let (X, B) be a DLT pair consisting of a Q-factorial algebraic
variety and an effective R-divisor, and let f : X → S be a projective morphism
to a quasi-projective algebraic variety. A minimal model of f : (X, B) → S is
given by a birational map α : (X, B) 99K (Y,C) over S to another Q-factorial
algebraic variety projective over S satisfying the following conditions:

(1) α is surjective in codimension 1, C = α∗B, and the pair (Y,C) is DLT.
(2) KY +C is relatively nef over S .
(3) If we take birational projective morphisms p : Z → X and q : Z → Y from

a third normal algebraic variety such that α = q◦ p−1, then the discrepancy
divisor G = p∗(KX + B) − q∗(KY + C) is effective, and the support of p∗G
is the union of all prime divisors contracted by α.

If in condition (3) we only assume that G ≥ 0 while the support of p∗G may
not contain all prime divisors contracted by α, then it is called a weak minimal
model.

Remark 3.4.4 Minimal models obtained by MMP satisfy the following con-
dition stronger than (3): Denote by Exc(α) the exceptional set of α, that is, the
complement set of the maximal open subset on which α is an isomorphism,
then the support of G coincides with p−1(Exc(α)). Condition (3) only focuses
on the phenomenon in codimension 1, but it is indeed sufficient.

Proof Since we only assume the existence of PL flips, we need to be careful
on running MMP, that is, we can run the MMP as long as each small contrac-
tion is a PL contraction. On the other hand, in order to show the termination
of certain MMP after finitely many steps, the idea is to adjust the boundary B
and to apply the special termination. Therefore, it is necessary to consider DLT
pairs instead of KLT pairs.

By assumption, KX + B ≡S D for some effective R-divisor D.

Step 0. We reduce to the case that X is smooth and the support of B+D is a
normal crossing divisor.

First, after replacing B, we may assume that (X, B) satisfies the KLT version
BCHM condition and B ≥ A, where A is a general effective relatively ample
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R-divisor. Next, take a log resolution g : X′ → (X, B+D), we can construct an
effective R-divisor B′ such that (X′, B′) is KLT and

E = KX′ + B′ − g∗(KX + B)

is effective whose support coincides with the support of the exceptional set of
g. Then a minimal model of f ◦ g : (X′, B′) → S is also a minimal model of
f : (X, B)→ S .

Indeed, take α : (X′, B′) 99K (X′′, B′′) to be a minimal model, since E is
contained in the numerically fixed part of KX′ + B′ over S , it is contracted by
α by Theorem 2.9.6, that is, α∗E = 0. Hence α ◦ g−1 : X 99K X′′ is surjective
in codimension 1, and the negativity can be checked easily. So it is a minimal
model of f : (X, B)→ S .

Also, note that B′ ≥ g−1
∗ A is still relatively big since A is general. Hence

f ◦g : (X′, B′)→ S satisfies the KLT version BCHM condition. After replacing
f : (X, B) → S by f ◦ g : (X′, B′) → S , we may assume that X is smooth and
the support of B + D is of normal crossing in the beginning.

In the following, we always assume that f : (X, B)→ S satisfies the BCHM
condition (while (X, B) is not necessarily KLT), KX+B ≡S D ≥ 0, X is smooth,
the support of B+D is of normal crossing, and B ≥ A is a general effective rela-
tively ample R-divisor. In particular, A has no common irreducible component
with D and ⌞B⌟.

Step 1. Write B =
∑

biDi and D =
∑

diDi by distinct prime divisors Di. We
will do induction on

θ = θ(X, B,D) = #{i | bi , 1, di , 0}.

If D = 0, then f : (X, B) → S is already minimal, hence we assume that
D , 0 in the following.

Suppose that θ = 0. Take a general relatively ample R-divisor H such that
KX + B + H is relatively ample and (X, B + H) is DLT, we can run an MMP
with scaling of H. Here since θ = 0, the support of D is contained in ⌞B⌟,
hence in each step the contracted curves are contained in the support of D and
each small contraction is a PL contraction. By the existence of PL flips and the
special termination of MMP with scaling, this MMP works and terminates.

Next, suppose that θ > 0. Take

t = min{t′ ∈ R>0 | Supp(⌞B⌟) , Supp(⌞B + t′D⌟)}.

Take B + C to be the divisor obtained by cutting the coefficients of B + tD by
1: B + C =

∑
min{bi + tdi, 1}Di. Here C is effective. Then KX + B + C ≡S



3.4. THE EXISTENCE AND FINITENESS OF MINIMAL MODELS 199

D + C and Supp(D + C) = Supp D. Note that t is the smallest number making
θ(X, B +C,D +C) < θ(X, B,D).

Consider the morphism f : (X, B + C) → S . Here we recall that (X, B)
satisfies the BCHM condition, where Supp(B + C) is simple normal crossing,
B ≥ A, and A has no common irreducible component with D, hence f : (X, B+
C)→ S still satisfies the BCHM condition. Since θ(X, B+C,D+C) is smaller,
by the inductive hypothesis on θ, there exists a minimal model f ′ : X′ → S
over S : there exists a birational map α : (X, B +C) 99K (X′, B′ +C′) such that
KX′ +B′+C′ is relatively nef. Here B′ = α∗B and C′ = α∗C. Denote D′ = α∗D,
then D′ ≡S KX′ + B′.

We may run an MMP on f ′ : (X′, B′)→ S with scaling of C′. As (X, B) and
(X, B + C) satisfy the BCHM condition, (X′, B′) and (X′, B′ + C′) also satisfy
the BCHM condition. Moreover, ⌞B′ +C′⌟ ≥ ⌞B′⌟.

By construction, there exists an effective R-divisor E′ whose support is con-
tained in ⌞B′⌟ such that KX′ +B′+C′+E′ = KX′ +B′+ tD′ ≡S (1+ t)(KX′ +B′).
For any extremal ray R in this MMP, we have ((KX′ + B′) · R) < 0 and
((KX′ + B′ + C′) · R) ≥ 0, hence (E · R) < 0. Therefore, any curve in R is
contained in ⌞B′⌟ and each small contraction is a PL contraction. Here we
keep the same symbol to denote strict transforms in the MMP. By the exis-
tence of PL flips and the special termination of MMP with scaling, this MMP
works and terminates to a minimal model: a morphism f ′′ : X′′ → S with a
birational map β : (X′, B′) 99K (X′′, B′′) over S .

The composition map β ◦ α : X 99K X′′ is surjective in codimension 1 and
KX′′ + B′′ is relatively nef. However, KX + B may not satisfy the negativity for
the divisors contracted by β ◦ α, so we need a little more detailed discussions.

Step 2. Consider the following set:

I = {s ∈ [0, 1] | f : (X, B + sC)→ S has a minimal model}.

Note that 1 ∈ I, and our goal is to show that 0 ∈ I. By modifying the argument
in Step 1, we will show that if s ∈ I and s > 0, then there exists a sufficiently
small ϵ > 0 such that s′ ∈ I if 0 ≤ s − s′ ≤ ϵ.

Take αs : (X, B+ sC) 99K (X′s, B
′
s+ sC′s) to be a minimal model of (X, B+ sC)

with natural morphism f ′s : X′s → S . Since negativity is an open condition, if ϵ
is sufficiently small, KX+B+ s′C is negative with respect to divisors contracted
by αs.

We can run an MMP on f ′s : (X′s, B
′
s + s′C′s)→ S with scaling of (s − s′)C′s.

As before, extremal rays in this MMP intersect negatively on an effective R-
divisor supported in ⌞B′s⌟. Hence by the existence of PL flips and the spe-
cial termination of MMP with scaling, this MMP works and terminates to a
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minimal model β′s : (X′s, B
′
s + s′C′s) 99K (X′′s′ , B

′′
s′ + s′C′′s′ ) with morphism

f ′′s′ : X′′s′ → S . The composition map βs′ ◦ αs : X 99K X′′s′ is surjective in
codimension 1 and KX′′s′

+ B′′s′ + s′C′′s′ is relatively nef. Moreover, KX + B+ s′C
satisfies the negativity, hence s′ ∈ I.

Step 3. Take s0 = inf I. Note that s0 < 1. We will show that s0 ∈ I, then by
Step 2, s0 = 0 ∈ I. In order to show this, we first construct a weak minimal
model.

Take a strictly decreasing sequence I ∋ sk → s0 and take minimal models
αk : (X, B + skC) 99K (X′k, B

′
k + skC′k) with morphisms f ′k : X′k → S .

We can run an MMP on f ′k : (X′k, B
′
k+ s0C′k)→ S with scaling of (sk− s0)C′k.

As before, by the existence of PL flips and the special termination of MMP
with scaling, this MMP works and terminates to a minimal model βk : (X′k, B

′
k+

s0C′k) 99K (X′′k , B
′′
k + s0C′′k ) with morphism f ′′k : X′′k → S .

The divisors contracted by βk◦αk are all irreducible components of D, hence
after replacing {sk} by a subsequence, we may assume that the contracted di-
visors are the same for all k. Then X′′k are all isomorphic in codimension 1.
Since KX′′k + B′′k + s0C′′k are all relatively nef, they are crepant to each other.
That is, the pullbacks of any two of them coincide on a common resolution.
Therefore, the discrepancy coefficients of KX + B+ s0C for contracted divisors
are independent of k.

Take an arbitrary prime divisor P contracted by βk ◦ αk. Denote by ak ≥ 0
the discrepancy coefficient of P for KX +B+ skC with respect to αk and denote
by bk ≥ 0 the discrepancy coefficient of P for KX′k + B′k + s0C′k with respect to
βk. Denote by aP the coefficient of P in the discrepancy divisor of KX +B+ s0C
with respect to βk ◦ αk, then aP ≥ limk→∞(ak + bk), which implies that aP ≥ 0.
Indeed, take common resolutions p : W → X, p′ : W → X′k, p′′ : W → X′′k ,
we have

aP = coeffP(p∗(KX + B + s0C) − p′′∗(KX′′k + B′′k + s0C′′k ))

≥ coeffP(p∗(KX + B + s0C) − p′∗(KX′k + B′k + skC′k))

+ coeffP(p′∗(KX′k + B′k + s0C′k) − p′′∗(KX′′k + B′′k + s0C′′k ))

= coeffP(p∗((s0 − sk)C)) + ak + bk.

Therefore, for any k, γ = βk ◦ αk gives a weak minimal model (X′′k , B
′′
k +

s0C′′k ) = (X′′, B′′ + s0C′′) of (X, B + s0C). Here note that we only need to
check that the discrepancy coefficients of contracted divisors are nonnegative,
because in this case the effectivity of the discrepancy divisor is a consequence
of the negativity lemma.
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Step 4. If aP > 0 holds for all P, then γ is a minimal model, and s0 ∈ I,
which concludes the proof.

If aP = 0 for some prime divisors contracted by γ, by the following lemma,
we can take a “crepant extraction” of these divisors from (X′′, B′′ + s0C′′) to
make them not contracted, and this gives a minimal model of (X, B + s0C).

Note that to apply the lemma, we need to check that for such P, the center
of P on X′′ does not contain any LC center of (X′′, B′′ + s0C′′), but this is from
the negativity in minimal models: If P is contracted by αk, then the center of
P on X′k does not contain any LC center of (X′k, B

′
k + skC′k); if P is contracted

by βk, then the center of P on X′′k does not contain any LC center of (X′′k , B
′′
k +

s0C′′k ). □

Lemma 3.4.5 (Crepant extraction) Let (X, B) be an n-dimensional quasi-
projective DLT pair and let P be a discrete valuation on the function field of
X whose center is on X. Take a log resolution f : Y → (X, B) such that the
center of P on Y is a prime divisor EP on Y, write f ∗(KX + B) = KY + BY

and suppose that the coefficient of EP in BY is in the half-open interval [0, 1).
Moreover, we assume that the center of P on X does not contain any LC center
of (X, B). Suppose that the existence of PL flips in dimension n and the special
termination of MMP with scaling in dimension n hold. Then there exists a
birational projective morphism g : (X′, B′) → (X, B) from a Q-factorial DLT
pair such that

(1) g is crepant: g∗(KX + B) = KX′ + B′.

(2) The center of P is a prime divisor on X′, and it is the only exceptional
divisor of g.

Proof Take a log resolution f : Y → (X, B) such that the coefficients of
exceptional divisors in BY are strictly smaller that 1. Such log resolution exists
by the definition of DLT and the assumption on P. Take E to be the divisor
with all coefficients 1 whose support is the union of all exceptional divisors of
f except for EP and take B′Y = max{BY , E}. Then (Y, B′Y ) is a DLT pair and
KY + B′Y − f ∗(KX + B) = F is effective whose support equals E = ⌞B′Y⌟.

Take a general relatively ample effective divisor H such that KY + B′Y +H is
relatively nef over X. For a sufficiently small positive real number t, we can run
an MMP on f : (Y, B′Y+tH)→ X with scaling of (1−t)H. Here note that (Y, B′Y+
tH) satisfies the BCHM condition and all extremal rays intersect negatively
with F. Hence by the existence of PL flips and the special termination of MMP
with scaling, we get a minimal model g : X′ → X. As KY + B′Y + tH ≡X

F + tH, if t is sufficiently small, then the support of the numerically fixed part
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of KY + B′Y + tH over X coincides with the support of F. Therefore, this MMP
over X contracts all divisors in E and obtains the desired extraction. □

At the end of this section, we show the finiteness of minimal models.

Theorem 3.4.6 (Finiteness of minimal models) Under the BCHM condition,
suppose that the existence of minimal models in dimension n holds, then the
finiteness of minimal models in dimension n holds.

Recall that in Theorem 2.10.3, we showed the finiteness of canonical models
assuming the existence of minimal models and canonical models. On the other
hand, in Remark 2.10.5 and Example 2.10.7, finiteness of minimal models does
not hold in general. But if we assume the BCHM condition, then we can show
the finiteness of minimal models, which indeed can be reduced to the finiteness
of canonical models.

Proof Fix f : X → S . Suppose that P is a polytope spanned by effective R-
divisors such that for any B ∈ P, f : (X, B)→ S satisfies the BCHM condition.
We may assume further that for any B ∈ P, (X, B) is KLT and B ≥ A, where A
is a fixed general relatively ample effective Q-divisor.

Take H1, . . . ,Hs to be relatively ample effective divisors whose classes form
a basis of N1(X/S ). Fix a sufficiently small real number ϵ > 0, after changing
A, we may assume that A − ϵ

∑
i Hi is effective and relatively ample. Consider

a new polytope

Q′ := {B +
∑

i

hiHi | B ∈ P,−ϵ ≤ hi ≤ ϵ}.

If taking ϵ sufficiently small, we may assume that for any B′ ∈ Q′, f : (X, B′)→
S satisfies the BCHM condition. Consider the polytope

Q := {B′ ∈ Q′ | [KX + B′] ∈ Eff(X/S )}.

Hence by the existence of minimal models and Theorem 2.10.3, there are
finitely many canonical models corresponding to divisors in Q. Here note that
for pairs with the BCHM condition, the existence of minimal models automati-
cally implies the existence of canonical models by the basepoint-free theorem.

In order to finish the proof, we only need to show that every minimal model
for a divisor in P is a canonical model for a divisor in Q.

Take any B ∈ P and suppose that α : (X, B) 99K (Y,C) is a minimal model
of f : (X, B) → S . Take a relatively ample divisor HY on Y and take H =
α−1
∗ HY . We can write H ≡S

∑
diHi for some real numbers di. Take a sufficiently

small real number δ > 0, we may assume that B + δ
∑

diHi ∈ Q and α :
(X, B + δ

∑
diHi) 99K (Y,C + δ

∑
diα∗Hi) is a minimal model of f : (X, B +
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δ
∑

diHi)→ S as negativity is an open condition, this is also a canonical model
since KY +C + δ

∑
diα∗Hi ≡S KY +C + δHY is ample over S . □

3.5 The nonvanishing theorem

Among a series of theorems deriving geometric consequences from numerical
conditions, the nonvanishing theorem is one of the most difficult ones. It was
proved in dimension 3 unconditionally ([95, 97]). Under the BCHM condition
that the boundary is big, this difficult theorem can be proved by induction on
dimensions.

Let us recall the statement of the nonvanishing theorem: If KX + B is rel-
atively pseudo-effective, then there exists an effective R-divisor D such that
D ≡S KX + B.

Theorem 3.5.1 (Nonvanishing theorem) Under the BCHM condition, sup-
pose that the existence of PL flips in dimension n, the special termination of
MMP with scaling in dimension n, the existence and finiteness of minimal mod-
els for pairs (X, B) with KX + B relatively big in dimension n hold, then the
nonvanishing theorem in dimension n holds.

Remark 3.5.2 In the following proof, we actually prove a slightly stronger
statement: There exists an effective R-divisor D such that D ∼R KX+B. This is
because we are going to derive the general result from the statement on generic
fibers, but numerical equivalence does not work for this purpose.

On the other hand, by Theorem 3.4.1 and Remark 3.4.2, assuming the ex-
istence of PL flips in dimension n and the special termination of MMP with
scaling in dimension n, then the nonvanishing theorem stating that KX + B is
“numerically equivalent” to an effective R-divisor is sufficient to show the ex-
istence of a minimal model (Y,C). We can make (X, B) satisfying the KLT ver-
sion BCHM condition, then (Y,C) is KLT and C is big, then by the basepoint-
free theorem, KY+C is semi-ample, and in particular, it is R-linearly equivalent
to an effective R-divisor. Hence KX + B is R-linearly equivalent to an effective
R-divisor, as it is obtained by the sum of the strict transform pullback and
exceptional divisors with positive coefficients.

Proof Step 0. We may assume that (X, B) is KLT and B = 3A + E is big,
where A is a general effective ample R-divisor and E is an effective R-divisor.
Up to the end of Step 5, we suppose that S is a point.

Take a log resolution g : X′ → X of (X, B), write g∗(KX + B) = KX′ + B′,
it suffices to show the theorem for the pair (X′, (B′)+). Therefore, from the
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beginning, we may assume that X is smooth and the support of B is a normal
crossing divisor. Also, we may assume that A is a Q-divisor and kA is integral
for a sufficiently large positive integer k.

Step 1. Consider the divisorial Zariski decomposition KX + B = P + N.
First, we consider the case P ≡ 0. In this case, KX + B ≡ N. From the above
Remark 3.5.2, we can get the nonvanishing up to R-linear equivalence.

Step 2. In the following, we assume that P . 0. We will construct a PLT
pair (Y,C) by increasing the boundary.

Since k(KX +B) is pseudo-effective, by Theorem 2.9.8, after replacing k, for
any sufficiently large m,

dim H0(X, ⌞mk(KX + B)⌟ + kA) >
(
(k + 1)n

kn

)
.

Fix a general smooth point x in X and denote by mx the maximal ideal of the
local ring of this point, since

length(OX,x/mkn+1
x ) =

(
(k + 1)n

kn

)
,

there exists an effective R-divisor G ∼R m(KX + B) + A such that multxG > n.
Then (X,G) is not LC at x. Indeed, if we consider the blowup at x, and

denote the exceptional divisor by Ex, then the coefficient of Ex in the pullback
of KX + G is larger than 1. Take a log resolution g : Y → X of (X, B + G)
in strong sense such that Ex is a divisor on Y . Take an effective R-divisor F
with sufficiently small coefficients whose support is the exceptional set of g
such that g∗A − F is ample and take a sufficiently general effective R-divisor
A′ ∼R g∗A − F.

Take Bt = 2A+ (1− t/m)A+E+ (t/m)G. Note that B0 = B, Bm = 2A+E+G,
and KX + Bt ∼R (1 + t)(KX + B).

Denote g∗(KX+Bt) = KY+C̄t, take C′t = (C̄t)+−g∗A+A′+F, and Et = (C̄t)−.
Here +, − mean the positive and negative parts. Then

KY +C′t ≡ g∗(KX + Bt) + Et.

Take the divisorial Zariski decomposition KY + C′t = Pt + Nt and take Ct =

(C′t − Nt)+.
Note that Ct is continuous for t ∈ (0,m). Indeed, from the construction,

Nt = (1 + t)g∗N + Et, where N is the numerically fixed part of KX + B. So Nt

is continuous and hence Ct is continuous.
As B0 = B, (Y,C0) is KLT. On the other hand, Bm = 2A + E +G and as x is



3.5. THE NONVANISHING THEOREM 205

a general point, the coefficient of Ex in Nm is 0. Here we use the fact that

KY +C′m ≡ g∗(KX + Bm) + Em ≡ (1 + m)g∗(KX + B) + (C̄m)−

and Ex is not in the support of (C̄m)−. Therefore, (Y,Cm) is not LC. We can
consider the LC threshold

t0 = max{t | (Y,Ct) is LC}.

Take C = Ct0 . As the support of C is a normal crossing divisor, (Y,C) is DLT.
By using the A contained in Bt to perturb the coefficients by the tiebreaking

method, we may assume that (Y,C) has a unique LC center. That is, (Y,C) is
PLT.

By the construction, KY +C is pseudo-effective and C−⌞C⌟ ≥ A′. So, (Y,C)
satisfies the BCHM condition. Moreover, by the construction of Ct, Supp(C)
does not contain any prime divisor in the numerically fixed part of KY +C, and
in particular, ⌞C⌟ is not contained in the numerically fixed part of KY +C.

Once we can show that KY + C is numerically equivalent to an effective
R-divisor, then KX + Bt0 is numerically equivalent to an effective R-divisor by
taking the image under g∗. Since KX+Bt0 ∼R (1+ t0)(KX+B), we can conclude
the proof.

Step 3. Replacing (X, B) by the PLT pair (Y,C), we may reduce to the case
that X is smooth, B = A + E + Z, where A is an effective ample Q-divisor, E is
an effective R-divisor, and Z = ⌞B⌟ is irreducible. The subadjunction formula
(KX + B)|Z = KZ + BZ determines BZ . By the construction in Step 2, Z is not
contained in the numerically fixed part of KX + B.

Take {Ei} to be the set of irreducible components of E and consider the
vector v =

∑
eiEi. For a sufficiently small real number ϵ > 0, suppose that

|ei| ≤ ϵ. For a sufficiently small real number t > 0, take Bt,v = B + t(v + A). As
ϵ is sufficiently small, we may assume that v + A is ample.

Since KX+Bt,v is big, by the assumption on the existence of minimal models
for the big case, there exists a minimal model αt,v : (X, Bt,v) 99K (Yt,v,Ct,v).

Step 4. We will show that if ϵ and t are sufficiently small, then the birational
map αt,v induces a birational map αZ : Z 99K W in a neighborhood of Z which
is independent of the choice of t, v. Here note that Z is not contained in the
numerically fixed part of KX + Bt,v if ϵ and t are sufficiently small, hence is not
contracted by αt,v.

Fix a sufficiently small t1 > 0, take 0 ≤ t < t1, consider the polytope

Vt = {B + t′(v + A) | v =
∑

eiEi, |ei| ≤ ϵ, t ≤ t′ ≤ t1}
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in the linear space of divisors which is not necessarily rational. Fix t > 0,
for any B′ ∈ Vt, (X, B′) is PLT and KX + B′ is big. By the assumption on the
existence and finiteness of minimal models, there are finitely many birational
maps αk : X 99K Xk such that for any Bt′,v ∈ Vt, αt′,v coincides with one of
αk. So by taking the limit t → 0, there are at most countably many minimal
models for V0 \ {B}.

Consider the restrictions of those countably many birational maps on Z. If
all αk |Z are the same for some ϵ, t sufficiently small, then we can finish this step.
So we may assume that there are at least two different αk |Z for any sufficiently
small ϵ, t1. For a birational map αk, consider the subset

Qk = {B′ ∈ V0 | αk is a weak minimal model of (X, B′)}.

If (X, B) has a weak minimal model, then we can finish the proof. So we may
assume that Qk does not contain B, which implies that Qk is a closed sub-
polytope of V0 \ {B}. Take V ′k to be the smallest cone containing Qk with vertex
at B.

Replacing V0 by V ′k1
, we can do the same argument on V ′k1

as above. If we
could not get the conclusion of this step, then this process does not terminate,
and we can get a decreasing sequence of cones V0 ⊃ V ′k1

⊃ V ′k2
⊃ · · · with

vertex B, where we can make proper choice of αki in each step such that αki+1 |Z

is different from αki |Z for each i. By the compactness, we can find a ray L
starting from B such that L intersects all Qki . Using this line, we can construct
an MMP on (X, B) with scaling which consists of an infinite sequence of flips
and is not isomorphic in a neighborhood of Z for infinitely many steps, which
contradicts the special termination of MMP with scaling for (X, B).

Step 5. By using a similar argument as in the proof of the basepoint-free
theorem, we will show certain extension theorem from Z to X by the vanishing
theorem. The subadjunction formula

(KYt,v +Ct,v)|W = KW +CW,t,v

defines CW,t,v, denote limt→0 CW,t,v = CW , note that this limit does not depend
on v. Since KW + CW,t,v is nef, KW + CW is also nef. Therefore, the birational
map αZ : (Z, BZ) 99K (W,CW ) is a weak minimal model except that W might
not be Q-factorial. Take Ā = αZ∗(A|Z).

Recall that B = A+ E +Z and Ei are irreducible components of E. Consider
P to be a sufficiently small rational polytope containing E in the linear space
spanned by Ei such that if E′ ∈ P, then (X, A + E′ + Z) is PLT. Since Ā is big,

NW = {Ē′ = αZ∗(E′|Z) | E′ ∈ P,KW + Ā + Ē′ is nef}
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is a rational polytope in the linear space of divisors on W by the cone theorem.
Its pullback

N = {E′ ∈ P | Ē′ = αZ∗(E′|Z) ∈ NW }

is a rational polytope containing E.
Take rational points F j ∈ N and real numbers r j > 0 such that

∑
r j = 1 and

E =
∑

r jF j. Correspondingly, we have Q-divisor B j = A + F j + Z such that
B =

∑
r jB j. Take CW, j = Ā + αZ∗(F j|Z), then CW =

∑
r jCW, j.

Taking t > 0 sufficiently small and F j sufficiently close to E, denote

B j = A + F j + Z = B + tv j,

we may assume that B + t(v j + A) satisfies conditions in Steps 3–4. Denote
Y j = Yt,v j , α j = αt,v j , and (α j)∗B j = C j, note that

(KY j +C j)|W = KW +CW, j.

Denote A j = α j∗A, then KY j +C j + tA j is nef and big.
Take q to be the common multiple of the denominators of the coefficients of

all F j, since KW + CW, j is nef and CW, j is big, by the effective basepoint-free
theorem, there exists a positive integer m independent of q such that |mq(KW +

CW, j)| is free. Consider the approximation of the coefficients of E by those of
F j, the differences are bounded by order 1

q1+δ for some δ > 0. As F j − E = tv j,
if q is sufficiently large, then we can make tq sufficiently small. Note that

mq(KY j +C j) −W

= (mq − 1)(KY j +C j + tA j) + KY j + α j∗((1 − (mq − 1)t)A + F j),

and we may assume that

(Y j, α j∗((1 − (mq − 1)t)A + F j))

is KLT, by the vanishing theorem,

H1(Y j,mq(KY j +C j) −W) = 0.

Hence

H0(Y j,mq(KY j +C j))→ H0(W,mq(KW +CW, j))

is surjective. So, H0(Y j,mq(KY j + C j)) , 0. Recall that (Y j,C j + tA j) is a
minimal model of (X, B j + tA) and take common resolutions p1 : X′ → X and
p2 : X′ → Y j, we know that p∗1(KX+B j+ tA) ≥ p∗2(KY j +C j+ tA j). On the other
hand, p∗1A ≤ p∗2A j by the negativity lemma, hence p∗1(KX +B j) ≥ p∗2(KY j +C j).
This implies that H0(X,mq(KX + B j)) , 0. As B =

∑
r jB j, there exists an

effective R-divisor D such that KX + B ∼R D.
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Step 6. Finally, we consider the case that S is not a point. Restricting to
the generic fiber Xη of f , from the above argument, there exists an effective
R-divisor Dη such that KXη +Bη ∼R Dη. That is, there exist real numbers ri and
rational functions hi on Xη such that, KXη + Bη − Dη =

∑
ridiv(hi).

Denote by D the closure of Dη on X. As hi are also rational functions on X,
G = KX + B − D −

∑
ridiv(hi) defines an R-divisor G on X. By construction,

there exists an effective ample divisor H on S such that f (Supp(G)) ⊂ H and
f ∗H +G ≥ 0. Hence KX + B ∼R,S D+G + f ∗H which proves the theorem. □

Remark 3.5.3 (1) The content of the nonvanishing theorem is to show the
weak effectivity (numerically equivalent to an effective divisor) assuming
the pseudo-effectivity. At first glance, the difference between effectivity
and pseudo-effectivity seems small. But in fact this difference is the root of
difficulty and fun in the minimal model theory. It asserts that some nature
of mathematics is condensed in the boundary of the cone of big divisors.
The basepoint-free theorem is also a statement of this type.

(2) If one wants to partially solve some conjectures in the minimal model
theory, what immediately comes to mind is, for example, the case that
B = 0, or the case that KX + B is big. However, such conditions are not
compatible with the inductive argument. On the other hand, the condition
that B can be written as the form B = A + E works very well in induction
as we have already seen.

(3) If B is a Q-divisor, then in the proof we can show that D can be also taken
to be a Q-divisor.

3.6 Summary

Summarizing all discussions so far, by complicated inductive arguments on
dimensions, all the theorems have been proved at the same time. In conclusion,
we get the following theorem:

Theorem 3.6.1 (Existence of minimal models) Let (X, B) be a KLT pair con-
sisting of a normal Q-factorial algebraic variety of arbitrary dimension and
an effective R-divisor. Let f : X → S be a projective morphism to a quasi-
projective variety. Assume the following conditions:

(1) B is relatively big, that is, there exists a relatively ample R-divisor A and
an effective R-divisor E such that B = A + E.

(2) KX + B is relatively pseudo-effective: [KX + B] ∈ Eff(X/S ).

Then there exists a minimal model of the morphism f : (X, B)→ S .
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This theorem has many important corollaries. First, combining with the
basepoint-free theorem, the following corollary directly follows:

Corollary 3.6.2 Under the assumption of Theorem 3.6.1, assume further that
B is a Q-divisor. Then the canonical ring

R(X/S ,KX + B) =
∞⊕

m=0

f∗(OX(⌞m(KX + B)⌟))

is a finitely generated graded OS -algebra.

The assumption that B is big is not necessary in the above result (see Theo-
rem 3.8.1).

The condition that the boundary is big works well with inductive arguments
on dimensions, but we can also conclude the existence of minimal models
when the log canonical divisor is big:

Corollary 3.6.3 In Theorem 3.6.1, if we replace conditions (1) and (2) with
the following condition (3), we can get the same conclusion:

(3) KX + B is relatively big.

Proof By assumption, there exists an effective R-divisor B′ such that KX +

B ≡S B′. For a sufficiently small ϵ > 0, (X, B + ϵB′) is KLT and B + ϵB′ is
relatively big. Therefore, there exists a minimal model of f : (X, B+ϵB′)→ S ,
which is also a minimal model of f : (X, B)→ S . □

Corollary 3.6.4 Let X be a normal Q-factorial algebraic variety with ter-
minal singularities of arbitrary dimension and let f : X → S be a projective
morphism to a quasi-projective variety. Assume that KX is relatively big. Then
there exists a minimal model of the morphism f : X → S with Q-factorial
terminal singularities.

Proof This follows from Corollary 3.6.3 for the case B = 0 and X has ter-
minal singularities. The resulting minimal model automatically has terminal
singularities. □

As a special case of the existence of minimal models, the existence of flips
is proved:

Theorem 3.6.5 (Existence of flips) Let (X, B) be a Q-factorial DLT pair and
let f : X → S be a projective morphism to a quasi-projective variety. Then the
flip of any small contraction of f : (X, B)→ S exists.

If KX + B is not relatively pseudo-effective, then the existence of Mori fiber
spaces can be proved unconditionally:
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Theorem 3.6.6 (Existence of Mori fiber spaces) Let (X, B) be a KLT pair
consisting of a normal Q-factorial algebraic variety of arbitrary dimension
and an effective R-divisor. Let f : X → S be a projective morphism to a quasi-
projective variety. Assume that KX + B is not relatively pseudo-effective, that
is,

[KX + B] < Eff(X/S ).

Then there exists a birational model of f admitting a Mori fiber space struc-
ture. That is, the following assertion holds. There exists a birational map α :
(X, B) 99K (Y,C) to a Q-factorial KLT pair projective over S , satisfying the
following conditions:

(1) α is surjective in codimension 1 and C = α∗B.
(2) If we take birational projective morphisms p : Z → X and q : Z → Y from

a normal algebraic variety such that α = q ◦ p−1, then G = p∗(KX + B) −
q∗(KY + C) is effective and the support of p∗G contains all prime divisors
contracted by α.

(3) There exists a Mori fiber space h : Y → T over S .

Note that we do not assume that B is relatively big.

Proof Take a sufficiently general relatively ample effective Q-divisor H such
that (X, B+H) is KLT and KX+B+H is relatively ample. Consider the pseudo-
effective threshold

t0 = min{t′ | KX + B + t′H is relatively pseudo-effective}.

Since t0 is a positive real number, B + t0H is relatively big. Therefore, by
running an MMP on f : (X, B) → S with scaling of H, we get a minimal
model α : (X, B + t0H) 99K (Y,C + t0α∗H) of f : (X, B + t0H) → S . Continue
to run this MMP, note that all new models are again weak minimal models of
f : (X, B + t0H) → S , then by the finiteness of minimal models, after finitely
many steps, the contraction morphism corresponding to the extremal ray is a
Mori fiber space. □

Remark 3.6.7 The partial results we proved so far are strong conclusions
derived from the strong assumption on the BCHM condition. It is expected that
induction methods will be successful even if we drop the BCHM condition, and
all problems in the minimal model theory can be settled in the future.

As an auxiliary result, the following theorem was already proved in the pro-
cess of the proof:
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Theorem 3.6.8 (Crepant blowup or crepant extraction) Let (X, B) be a KLT
pair consisting of a normal quasi-projective algebraic variety and an effective
R-divisor B. Take a very log resolution f ′ : Y ′ → X of the pair (X, B) and
write ( f ′)∗(KX +B) = KY ′ +C′. Choose a set of several f ′-exceptional divisors
on Y with nonnegative coefficients in C′. Then there exists a Q-factorial KLT
pair (Y,C) and a birational projective morphism f : (Y,C) → (X, B) which is
crepant (i.e. f ∗(KX + B) = KY + C) and the set of exceptional divisors of f
coincides with the chosen set of prime divisors.

Proof Take an effective R-divisor F on Y ′ whose support is the f ′-exceptional
divisors not contained in the given set of prime divisors. If F is sufficiently
small, then (Y ′, (C′)+ + F) is KLT. Then a minimal model of the morphism
f ′ : (Y ′, (C′)+ + F) → X is the crepant blowup we want. Here as f ′ is bira-
tional, every R-divisor on Y ′ is relatively big. □

As special cases, we get “Q-factorializations” and “Q-factorial terminaliza-
tions”:

Corollary 3.6.9 (Q-factorialization) Let (X, B) be a KLT pair consisting of a
normal quasi-projective algebraic variety and an effective R-divisor B. Then
there exists a Q-factorialization of X, that is, there exists a normal Q-factorial
algebraic variety Y and a birational projective morphism g : Y → X which is
isomorphic in codimension 1.

Proof Take the chosen set of prime divisors to be the empty set. □

Corollary 3.6.10 (Q-factorial terminalization) Let (X, B) be a KLT pair con-
sisting of a normal quasi-projective algebraic variety and an effective R-divisor
B. Then there exists a Q-factorial terminalization of (X, B), that is, there exists
a Q-factorial terminal pair (Y,C) and a birational projective crepant mor-
phism g : (Y,C)→ (X, B).

Proof Take the chosen set of prime divisors to be the set of all exceptional
divisors with nonnegative coefficients in C′. □

Note that Q-factorial terminalizations are maximal among all crepant blowups.
In particular, if B = 0 and X has canonical singularities, then this is the crepant
blowup considered in [61]. [65] applied crepant blowups to prove the termina-
tion of flips inductively.

Example 3.6.11 As toric varieties are KLT, they admit Q-factorializations.
Take a toric variety (X, B). That is, T ⊂ X is an open immersion of an

algebraic torus into a normal algebraic variety and B = X \ T is a divisor
with all coefficients 1. Take Σ = {σ} to be the corresponding fan. Take Σ′ to be
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a fan with the same vertices as Σ in which each σ is subdivided into simplicial
cones. Take (X′, B′) to be the corresponding toric variety. In this case, X′ is
Q-factorial and there is a birational proper morphism f : X′ → X isomorphic
in codimension 1 such that f ∗(KX + B) = KX′ + B′.

The choice of subdivision is not necessarily unique. If taking the subdivision
appropriately, then f is projective and we get a Q-factorialization.

Similarly, we can prove the following result, which is useful for generalizing
assertions for KLT or DLT pairs to LC pairs:

Corollary 3.6.12 (DLT blowup) Let (X, B) be an LC pair consisting of a nor-
mal quasi-projective algebraic variety of arbitrary dimension and an effective
R-divisor B. Then there exists a Q-factorial DLT pair (Y,C) and a birational
projective crepant morphism f : (Y,C) → (X, B) such that the exceptional
divisors of f are contained in ⌞C⌟.

Proof Take a log resolution f ′ : Y ′ → X of the pair (X, B), write ( f ′)∗(KX +

B) = KY ′ +C′. As (X, B) is LC, the coefficients of C′ are at most 1. Write C′′ =
( f ′)−1

∗ B + Exc( f ′) as the sum of the strict transform of B and all exceptional
divisors with coefficients 1. Then C′′ − C′ is effective and its support is the
union of all exceptional divisors of f ′ with coefficients less than 1 in C′.

Take a general relatively ample effective divisor A and a sufficiently small
positive real number t, we can apply the MMP to the morphism f : (Y ′,C′′ +
tA)→ X. Here (Y ′,C′′+tA) is DLT and its boundary contains a relatively ample
divisor. As KY ′ +C′′ + tA = ( f ′)∗(KX + B) + (C′′ −C′) + tA, if t is sufficiently
small, then the support of the numerically fixed part of KY ′ + C′′ + tA over X
coincides with the support of C′′ − C′. Therefore, the MMP over X contracts
all such divisors and obtains a DLT blowup. □

If we further blow up a DLT blowup along the intersection of several ir-
reducible components in the boundary with coefficients 1, then we again ob-
tain a model which is log crepant. So there is no maximal model among DLT
blowups in general.

3.7 Algebraic fiber spaces

In this section, we introduce the weak semistable reduction theorem ([1]) and
the semipositivity theorem ([53]) for algebraic fiber spaces. We will just give
outlines without proofs. There is a relatively simple proof for the latter ([75]).

Algebraic fiber spaces can be considered as the relative version of algebraic
varieties. Birational equivalences between algebraic varieties are given by their



3.7. ALGEBRAIC FIBER SPACES 213

function fields. The function fields of algebraic varieties are regular extensions
of the base field. So birational equivalences between algebraic fiber spaces are
given by regular extensions of function fields.

The weak semistable reduction theorem can be viewed as the desingulariza-
tion theorem for algebraic fiber spaces. The semipositivity theorem, similar to
the vanishing theorem, is an important consequence of the Hodge theory. Both
theorems are proved when the base field is of characteristic 0, and in positive
characteristics the latter has counterexamples.

3.7.1 Algebraic fiber spaces and toroidal geometry

A finite extension L/K of fields is a regular extension if the following condi-
tions are satisfied:

(1) (Separability) There exists a transcendence basis t1, . . . , tn over K such that
L is a separable algebraic extension of K(t1, . . . , tn).

(2) (Relative algebraic closedness) The elements in L which are algebraic over
K are exactly the elements in K.

If K is an algebraically closed field, then the above two conditions automat-
ically hold. In this case, there exists an algebraic variety X defined over K such
that L = K(X).

If K is a regular extension of an algebraically closed field k, then there exist
algebraic varieties X,Y defined over k such that L = k(X),K = k(Y) and a
morphism f : X → Y satisfying the following conditions:

(1) f is dominant, that is, the generic point of X is mapped to the generic point
of Y .

(2) The geometric generic fiber of f is irreducible and reduced.

The morphism f : X → Y satisfying conditions above is called an algebraic
fiber space. As in this book, we are mainly interested in projective algebraic
varieties, X and Y are usually assumed to be projective. We often work over a
base field of characteristic 0, in which case the separability of field extensions
automatically holds.

Next, we explain the language of toroidal geometry. A toroidal variety is
a pair of a variety and a divisor locally isomorphic to a toric variety. Here
“locally” means in the classical analytic topology or étale topology, and the
base field is the complex number field.

A pair (X, B) consisting of a normal algebraic variety and an effective divisor
with all coefficients 1 is called a toroidal variety, if for each point xi ∈ X, there
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exists an analytic neighborhood Ui of xi, a toric variety Yi, and an analytic
neighborhood Vi of a point yi ∈ Yi such that there is an analytic isomorphism
between the triples (Ui, B ∩ Ui, xi) � (Vi,Ci ∩ Vi, yi). Here Ci = Yi \ Ti is a
divisor which is the complement of the torus on Yi. Here we use the subscript i
to indicate that Yi, yi depend on xi. Here in addition we assume that irreducible
components of B are normal, that is, we only consider toroidal varieties without
self-intersection.

A pair (X, B) is called a smooth toroidal variety, if X is a smooth algebraic
variety and B is a normal crossing divisor. A pair (X, B) is called a quasi-
smooth toroidal variety, if locally it is the quotient space of a smooth toroidal
variety by a finite Abelian group: For any point xi ∈ X, there exists an analytic
neighborhood xi ∈ Ui, and a finite Abelian group Gi acting diagonally on an
analytic neighborhood Ṽi of a point ỹi in the affine space Cn such that there
is an analytic isomorphism of pairs (Ui, B ∩ Ui, xi) � (Ṽi/Gi, (C̃ ∩ Ṽi)/Gi, yi).
Here C̃ is the union of n coordinate hyperplanes and yi is the image of ỹi.
Quasi-smooth toroidal varieties are Q-factorial.

Remark 3.7.1 Similar to toric varieties, a toroidal variety is also associated
with a fan ([79]). While a toric variety is completely determined by its fan, in
the case of a toroidal variety, the analytically local structure and the informa-
tion of global gluing are determined by the fan.

A toroidal variety is analytically locally isomorphic to a KLT pair, so it
is also KLT itself, and admits a Q-factorialization. A toroidal variety is Q-
factorial if and only if the corresponding fan is simplicial, if and only if the
toroidal variety is quasi-smooth.

For a toric variety (X, B), the sheaf Ω1
X(log B) of all logarithmic differential

forms, that is, rational differential forms on X with at most logarithmic poles
along B, is a locally free sheaf of rank n = dim X. Indeed, the extension of
regular differential forms dzi/zi (i = 1, . . . , n) on the algebraic torus T = X \ B
form a basis. Here zi (i = 1, . . . , n) are coordinates of T . Hence as a toroidal
variety (X, B) is locally isomorphic to a toric variety, Ω1

X(log B) is also locally
free.

Take Ω•X(log B) to be the exterior algebra of Ω1
X(log B). Using the exterior

derivative d on logarithmic differential forms, we can define the log De Rham
complex

Ω•X(log B) = {0→ OX → Ω
1
X(log B)→ Ω2

X(log B)→ · · · → Ωn
X(log B)→ 0}.

A dominant morphism f : (X, B) → (Y,C) between toroidal varieties is
called a toroidal morphism if analytically locally it is isomorphic to a toric
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morphism. If (X, B) and (Y,C) are quasi-smooth, this is equivalent to the fol-
lowing: For any point xi ∈ X, there exist analytic neighborhoods xi ∈ Ui and
yi = f (xi) ∈ U′i , and finite morphisms from open subsets of affine spaces
πi : Ṽi → Ui and π′i : Ṽ ′i → U′i such that f is induced by fi : Ṽi → Ṽ ′i , where
we may write

f ∗i w j =
∏

zc jk

k

for coordinates (z1, . . . , zn) and (w1, . . . ,wm). Here n = dim X, m = dim Y , and
[c jk] is an integer matrix whose entries are nonnegative.

For a toroidal morphism f : (X, B) → (Y,C), the sheaf of relative logarith-
mic differential forms Ω1

X/Y (log) is defined by

Ω1
X/Y (log) = Ω1

X(log B)/ f ∗Ω1
Y (log C).

It is a locally free sheaf on X of rank dim X − dim Y . In particular, if f is finite,
then f ∗Ω1

Y (log C) � Ω1
X(log B) and Ω1

X/Y (log) � 0.
We can similarly define the relative log De Rham complex Ω•X/Y (log). De-

note d = dim X − dim Y , then

Ωd
X/Y (log) � OX(KX + B − f ∗(KY +C)).

This is denoted by ωX/Y (log) and called the relative log canonical sheaf.

3.7.2 The weak semistable reduction theorem and the
semipositivity theorem

Assume that the base field is of characteristic 0.
The desingularization theorem is a fundamental theorem in birational ge-

ometry of algebraic varieties, while the “weak semistable reduction theorem”
proved by Abramovich and Karu is a fundamental theorem in birational geom-
etry of algebraic fiber spaces:

Theorem 3.7.2 (Weak semistable reduction theorem [1]) Let f0 : X0 → Y0

be a surjective morphism between projective varieties with geometrically irre-
ducible generic fiber, and let Z ⊂ X0 be a closed proper subset. Then we can
construct the following algebraic fiber space models:

(1) Well-prepared model: There exists a quasi-smooth projective toroidal va-
riety (X1, B1), a smooth projective toroidal variety (Y1,C1), a morphism
f1 : X1 → Y1, and birational morphisms g1 : X1 → X0, h1 : Y1 → Y0 such
that f0 ◦ g1 = h1 ◦ f1 with the following properties:

(a) g−1
1 (Z) ⊂ B1.

(b) f1 : (X1, B1)→ (Y1,C1) is a toroidal morphism.
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(c) f1 is equi-dimensional, that is, every geometric fiber is of dimension
dim X0 − dim Y0.

(2) Weakly semistable model: There exists a quasi-smooth projective toroidal
variety (X2, B2), a smooth projective toroidal variety (Y2,C2), a morphism
f2 : X2 → Y2, a Galois finite morphism h2 : Y2 → Y1, and a birational
projective morphism µ : X2 → (X1 ×Y1 Y2)ν isomorphic in codimension 1
with the following properties:

(a) g−1
2 (B1) = B2, h−1

2 (C1) = C2.
(b) f2 : (X2, B2)→ (Y2,C2) is a toroidal morphism.
(c) f2 is equi-dimensional, and every geometric fiber is reduced.

Here (X1 ×Y1 Y2)ν is the normalization of the fiber product and g2 : X2 → X1

is the induced morphism. Moreover, by adding some reduced divisor to C1 and
replacing B1 accordingly, we may assume that g2 : (X2, B2) → (X1, B1) and
h2 : (Y2,C2)→ (Y1,C1) are toroidal morphisms.

Remark 3.7.3 (1) A well-prepared model is a birational model, but a weakly
semistable model is not as there is a base change. The birational morphism
µ is a Q-factorialization.

(2) The reason that a weakly semistable model is called “weak” is that the
ambient space X2 is not necessarily smooth. If the base space Y0 is of
dimension 1, then there exists a semistable model which is not “weak”,
that is, X2 is smooth. However, X2 → (X1 ×Y1 Y2)ν is not isomorphic in
codimension 1, but is a resolution of singularities ([79]). The base change
h2 is constructed by using Theorem 1.8.2.

In general, a locally free sheaf F on a projective algebraic variety X is said
to be numerically semipositive or nef if the corresponding tautological quotient
invertible sheaf OPX (F)(1) on the projecive bundle PX(F) over X is nef. The fol-
lowing semipositivity theorem represents the geometric property of algebraic
fiber spaces:

Theorem 3.7.4 (Semipositivity theorem [53]) For a well-prepared algebraic
fiber space f : (X, B)→ (Y,C), the following properties hold:

(1) For any integers p, q, Rq f∗(Ω
p
X/Y (log)) is a locally free sheaf on Y.

(2) For any integer q, Rq f∗(ωX/Y (log)) is numerically semipositive.

This result can be generalized by using the covering trick:

Theorem 3.7.5 ([69, Theorem 2]) Let f : (X, B̄)→ (Y, C̄) be a well-prepared
algebraic fiber space and let B be an effective Q-divisor whose support is
contained in B̄ with coefficients in the interval [0, 1). Assume that κ(Xy, (KX +
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B)|Xy ) = 0 for the generic fiber Xy of f . Write B̄ =
∑

Bi, C̄ =
∑

C j into
irreducible components, write B =

∑
biBi.

Assume that there exists a positive integer m and an integral effective di-
visor D on X satisfying the following conditions, which determine effective
Q-divisors M and C on Y:

(1) m(KX + B) is Cartier, D ∈ |m(KX + B)|, and the support of D is contained
in B̄. Write D =

∑
diBi.

(2) M is the largest Q-divisor on Y satisfying f ∗M ≤ D. Write M =
∑

m jC j.
(3) Take B0 := B − D/m + f ∗(M/m) =

∑
b0

i Bi, f ∗C j =
∑

bi jBi and

c j = max
i
{(b0

i + bi j − 1)/bi j | f (Bi) = C j}.

Take C =
∑

c jC j.

Then (Y,C) is KLT and L := M/m − (KY +C) is nef.

Proof Step 1. From the construction, KX+B0 ∼Q f ∗M/m ∼Q f ∗(L+KY +C).
Take B1 = B0 − f ∗C, then KX + B1 ∼Q f ∗(L + KY ).

C is the smallest Q-divisor satisfying f ∗(C̄ −C) ≤ B̄ − B0. Also,

f ∗L ∼Q KX + B0 − f ∗(KY +C) = KX + B̄− f ∗(KY + C̄)− (B̄− B0)+ f ∗(C̄ −C).

Therefore, L is the largest Q-divisor satisfying

f ∗L ≤ KX + B̄ − f ∗(KY + C̄).

In particular, L is independent of the choice of the coefficients of B. However,
the comparison of KX + B̄ and KY + C̄ is given by D.

Step 2. We show that (Y,C) is KLT.
For each j, there exists i j such that f (Bi j ) = C j and the coefficient of Bi j in

−D/m + f ∗(M/m) is 0. Therefore, b0
i ≤ bi and b0

i j
= bi j , and hence 0 ≤ c j < 1.

So (Y,C) is KLT. In the following we show that L is nef.

Step 3. We construct a covering space.
Take a rational function h , 0 such that D − m(KX + B) = div(h) and

denote by X′ the normalization of X in the field k(X)(h1/m). The field extension
k(X′)/k(X) is a Galois extension with the cyclic group G = Z/(m0) as the
Galois group. Here the degree m0 of the extension is a divisor of m.

As the support of div(h) is contained in B̄, we get a finite toroidal morphism
πX : (X′, B̄′) → (X, B̄). Take the Stein factorization of f ◦ πX , we get a finite
toroidal morphism πY : (Y ′, C̄′) → (Y, C̄) and a toroidal algebraic fiber space
f ′ : (X′, B̄′)→ (Y ′, C̄′).
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We construct a Galois covering ρ : Y1 → Y using Theorem 1.8.2 and take
base changes of the above constructions: Let Y ′1 be the normalization of the
fiber product Y ′ ×Y Y1 and let X′1 be the normalization of X′ ×Y Y1, et cetera,
whereby if something is not irreducible, then take one of its irreducible com-
ponents. By the following lemma, Y ′1 becomes smooth and f ′1 : (X′1, B̄

′
1) →

(Y ′1, C̄
′
1) becomes a well-prepared algebraic fiber space.

Lemma 3.7.6 Let X = Cn be an affine space with coordinates x1, . . . , xn and
let π : Y → X be a finite surjective morphism from a normal affine variety such
that π is etale outside a normal crossing divisor defined by x1 · · · xn = 0. Then
there exist positive integers m1, . . . ,mn such that, if X′ = Cn is another affine
space with coordinates x′1, . . . , x

′
n such that (x′i )

mi = xi, then the normalization
of the fiber product Y ×X X′ is smooth.

Proof We can write X = Spec(σ ∩ M) for a lattice M = Zn and a simplicial
cone σ ⊂ MR := M ⊗ R generated by the fundamental vectors ei (1 ≤ i ≤ n).
Then there is another lattice M′ containing M which is contained in MR such
that Y = Spec(σ ∩ M′). If we take sufficiently divisible mi, then the lattice
M′′ generated by ei/mi contains M′. This means that there is a morphism X′ =
Spec(σ∩M′′)→ Y , hence the normalization of the fiber product is smooth. □

In the following, we just use f ′ : (X′, B̄′) → (Y ′, C̄′) to denote the well-
prepared algebraic fiber space.

Take the minimal positive integer m1 such that H0(Xy,m1(KX + B)|Xy ) , 0,
which is a divisor of m0. The induced morphism X′ȳ′ → Xȳ between geometric
generic fibers is a finite Galois morphism with the subgroup G1 = Z/(m1) < G
as the Galois group. The morphism πY between base varieties is a finite Galois
morphism with Galois group G/G1.

Write KX′ + B′ = π∗X(KX + B). As the coefficients of B′ are strictly smaller
than 1, D induces an effective divisor D′ ∈ |KX′ |. The support of D′ is contained
in B̄′.

Further, take the weak semistable reduction by a base change π′Y : (Y ′′, C̄′′)→
(Y ′, C̄′), we get a weakly semistable algebraic fiber space f ′′ : (X′′, B̄′′) →
(Y ′′, C̄′′). Denote the induced morphisms by hX : (X′′, B̄′′) → (X, B̄) and
hY : (Y ′′, C̄′′) → (Y, C̄). D′ induces an effective divisor D′′ ∈ |KX′′ |. The sup-
port of D′′ is contained in B̄′′.

Step 4. Apply the semipositivity theorem to f ′ : (X′′, B̄′′) → (Y ′′, C̄′′).
There exists a numerically semipositive locally free sheaf F on Y ′′ such that
f ′′∗ OX′′ (KX′′ ) = F ⊗ OY ′′ (KY ′′ ).

The Galois group G1 acts on F. The generator g of G1 acts on the element
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s ∈ H0(X′′,KX′′ ) determining D′′ by g(s) = ζs. Here ζ is a primitive m1th
root of 1. The corresponding invariant subsheaf of F is a nef invertible sheaf
OY ′′ (L′′).

Since L′′,D′′ are integral divisors and the fibers of f ′′ are reduced, L′′ is the
largest Q-divisor satisfying ( f ′′)∗L′′ ≤ D′′ + B̄′′ − ( f ′′)∗(KY ′′ + C̄′′). On the
other hand, h∗X(KX + B̄) = KX′′ + B̄′′ and h∗Y (KY + C̄) = KY ′′ + C̄′′, so L′′ = h∗Y L.
Therefore, L is nef. □

3.8 The finite generation theorem

In this section, we prove the main theorem of this book: The finite generation
theorem, that is, “the canonical ring of any algebraic variety is finitely gen-
erated”. This can be reduced to the general type case as in BCHM using the
semipositivity theorem after simplifying the situation by the weak semistable
reduction theorem. Here slightly generally, we introduce the proof for KLT
pairs ([29]).

Theorem 3.8.1 (Finite generation of canonical rings) Let (X, B) be a KLT
pair consisting of a projective algebraic variety and a Q-divisor. Then the log
canonical ring

R(X,KX + B) =
∞⊕

m=0

H0(X, ⌞m(KX + B)⌟)

is a finitely generated graded ring.

Proof First, the right-hand side has a graded ring structure as

⌞m1(KX + B)⌟ + ⌞m2(KX + B)⌟ ≤ ⌞(m1 + m2)(KX + B)⌟

for positive integers m1,m2. Also note that the log canonical ring is a birational
invariant in the following sense: For a log resolution µ : X′ → (X, B), write
µ∗(KX + B) = KX′ + B′ and decompose B′ = (B′)+ − (B′)− into positive and
negative parts, then R(X,KX + B) � R(X′,KX′ + (B′)+).

The degree 0 part of the quotient field of the canonical ring

L = {s1/s2 | s1, s2 ∈ H0(X, ⌞m(KX + B)⌟) for some m ≥ 0, s2 , 0}

is a subfield of the function field C(X), and the field extension C(X)/L is a
regular extension. Therefore, by taking birational models of C(X) and L ap-
propriately, we can construct an algebraic fiber space f : X → Y . This is
called the Iitaka fibration. By the construction, dim Y = κ(X,KX + B) and
κ(Xy, (KX + B)|Xy ) = 0 for the generic fiber Xy of f .
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When R(X,KX + B) = C the assertion is trivial, so in the following we
assume that R(X,KX + B) , C, that is, dim Y > 0. Take a sufficiently large
and sufficiently divisible integer m and fix an element D ∈ |m(KX + B)|. Taking
Z = Supp(D+B) and applying the weak semistable reduction theorem, we can
take the birational model of the field extension C(X)/L to be a well-prepared
algebraic fiber space f : (X, B̄) → (Y, C̄). By the construction, B̄ is a divisor
contained in the support of the pullback of D + B with coefficients 1. Take
irreducible decompositions B̄ =

∑
Bi and C̄ =

∑
C j.

We use the same symbols B,D for divisors on the new model X. That is, we
denote again by B the Q-divisor obtained by the original B after replacing by
the birational model and denote by D ∈ |m(KX + B)| the divisor corresponding
to the original D. Write B =

∑
biBi and D =

∑
diBi. Write D = Dh + Dv

into the horizontal and vertical irreducible components with respect to f . Each
irreducible component of Dh intersects Xy and each irreducible component of
Dv is mapped by f to a divisor of Y . As κ(Xy, (KX + B)|Xy ) = 0, any multiple of
Dh is not movable.

Define M to be the largest Q-divisor on Y such that f ∗M ≤ Dv. After re-
placing m by its multiple, we may assume that M is an integral divisor. As f is
equi-dimensional,

R(X,KX + B)(m) � R(Y,M) =
∞⊕

m′=0

H0(Y,m′M).

Therefore, it suffices to show that R(Y,M) is finitely generated. By the con-
struction, M is big.

By Theorem 3.7.5, take B − D/m + f ∗(M/m) =
∑

aiBi, f ∗C j =
∑

bi jBi,

c j = max
i
{(ai + bi j − 1)/bi j | f (Bi) = C j},

and C =
∑

c jC j. Then (Y,C) is KLT and M/m − (KY +C) is nef.
Since M is big, there exists an ample Q-divisor A and an effective Q-divisor

E such that M/m = A + E. Take a sufficiently small positive rational number ϵ
such that (Y,C + ϵE) is KLT and M/m− (KY +C)+ ϵA is ample. Take a general
effective ample Q-divisor A′ ∼Q M/m − (KY +C) + ϵA with sufficiently small
coefficients such that (Y,C + ϵE + A′) is KLT. As

(1 + ϵ)M/m ∼Q KY +C + ϵE + A′,

the finite generation of R(Y,M) follows from the finite generation of log canon-
ical rings of pairs of log general type. □

Remark 3.8.2 (1) Even in the no-boundary case B = 0, the boundary divisor
constructed on Y may be not 0. This is because there are variations and
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degenerations of fibers in the algebraic fiber space f . Therefore, in order
to prove theorems in the usual nonlog world, the theory in the log world is
indispensable.

(2) When the coefficients of B are not rational, the log canonical ring is not
necessarily finitely generated. This is because the sheaf of graded rings

∞⊕
m=0

OX(⌞m(KX + B)⌟)

is not necessarily finitely generated over OX .

3.9 Generalizations of the minimal model theory

So far in this book, we developed the minimal model theory for algebraic va-
rieties over a base field which is an algebraically closed field of characteristic
0. This result can be easily generalized to algebraic varieties admitting finite
group actions or over algebraically nonclosed fields. Results obtained over an
algebraically closed field of characteristic 0 without a group action can be all
generalized after appropriate modifications. Let us check these one by one.

3.9.1 The case with a group action

Consider a pair (X, B) with a morphism f : X → S admitting an action of
a finite group G. That is, G acts on X and S , f is G-equivariant, and B is a
G-invariant R-divisor.

First, we extend definitions in numerical geometry. Linear spaces N1(X/S )
and N1(X/S ) admit actions of G. Take invariant subspaces N1(X/S )G ⊂ N1(X/S )
and N1(X/S )G ⊂ N1(X/S ) which are dual to each other. N1(X/S )G is gener-
ated by G-invariant Cartier divisors and N1(X/S )G is generated by G-invariant
1-cycles. The dimension is denoted by ρG(X/S ).

Since prime divisors and curves are not necessarily G-invariant, they do not
necessarily generate N1(X/S )G or N1(X/S )G. Since G is finite, we can consider
the trace maps, which are projections p1 : N1(X/S ) → N1(X/S )G and p1 :
N1(X/S ) → N1(X/S )G defined by p1(D) = (1/#G)

∑
g∈G g∗D and p1(C) =

(1/#G)
∑

g∈G g∗C. The images of prime divisors and curves under these maps
generate N1(X/S )G and N1(X/S )G. If D is an f -ample Cartier divisor, then
p1(D) is a G-invariant f -ample Q-Cartier divisor.

Denote by NE(X/S )G = NE(X/S )∩N1(X/S )G the closed cone of G-invariant
effective 1-cycles and by Amp(X/S )G = Amp(X/S ) ∩ N1(X/S )G the cone of
G-invariant ample divisors.
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A log resolution of (X, B) is a G-equivariant birational projective morphism
f : Y → X with a G-invariant normal crossing divisor on Y satisfying pre-
scribed conditions. Here a G-invariant normal crossing divisor is assumed to
be a sum of smooth G-invariant divisors (which is not necessarily irreducible,
but with irreducible components disjoint from each other).

The definitions of KLT, LC, et cetera for (X, B) are the same as the case
without the action of G. DLT is defined by requiring the existence of a G-
equivariant log resolution satisfying prescribed conditions. Note that the irre-
ducible components of ⌞B⌟ might be permuted by the action of G.

We introduce a new concept about Q-factoriality. X is said to be G-equivariantly
Q-factorial if any G-invariant integral divisor is Q-Cartier. Even if there ex-
ists a prime divisor D which is not Q-Cartier,

∑
g∈G g∗D could be Q-Cartier

and X could be G-equivariantly Q-factorial. Therefore, G-equivariantly Q-
factoriality does not necessarily imply Q-factoriality.

In the G-equivariant MMP, we assume that the pair (X, B) is KLT or DLT
and X is G-equivariantly Q-factorial.

Lemma 3.9.1 If a G-invariant Cartier divisor D is positive on NE(X/S )G \

{0}, then it is f -ample.

Proof Take any z ∈ NE(X/S )\{0}. If (D ·z) ≤ 0, then as (D ·g∗z) = (g∗D ·z) =
(D · z) ≤ 0, we get (D · p1(z)) ≤ 0 which is a contradiction. □

The vanishing theorems can be used exactly the same way and the basepoint-
free theorem can be applied. If D is G-invariant, then the morphism corre-
sponding to |mD| is G-equivariant. By the rationality theorem, we derive the
cone theorem. The proof is by replacing everything by G-invariant or G-equivariant
one in the proof of the case without G action. Here an extremal ray is an ex-
tremal ray of NE(X/S )G, and the corresponding morphism g : X → Y has
ρ(X/Y)G = 1. However, ρ(X/Y) might be greater than 1.

The contraction morphism associated to an extremal ray can be classified
into divisorial contractions, small contractions, and Mori fiber spaces. How-
ever, the exceptional locus of a divisorial contraction is not necessarily a prime
divisor:

Lemma 3.9.2 Let g : X → Y be a contraction morphism associated to an ex-
tremal ray. Suppose that g is birational and its exceptional set contains a prime
divisor. Then the exceptional set is of pure codimension 1 and its irreducible
components are transitive under the action of G.

Proof Take a prime divisor E0 contained in the exceptional set, write E =∑
g∈G g∗E0. Then E is a G-invariant Q-Cartier divisor. By the negativity lemma,
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there is a G-invariant effective 1-cycle C which is contracted by g to finitely
many points such that (E · C) < 0. If the exceptional set does not coincide
with the support of E, then there is a G-invariant effective 1-cycle C′ which is
contracted by g to finitely many points such that (E ·C′) ≥ 0, which contradicts
the fact that ρ(X/Y)G = 1. □

In this way, the framework of the minimal model theory in Chapter 2 can
be extended to morphisms from pairs admitting G-actions. Also arguments in
Chapter 3 can be extended to DLT pairs (X, B) satisfying the G-equivariant
BCHM condition. Here the G-equivariant version of the BCHM condition re-
quires that the R-divisors A, E are G-invariant. Hence when B is a Q-divisor,
the canonical ring is a finitely generated graded OS -algebra with an action of
G. In particular, the existence of G-equivariant flips follows.

3.9.2 The case when the base field is not algebraically closed

Let us consider the generalization to a base field k of characteristic 0, which is
not algebraically closed.

As the characteristic of k is 0, the algebraic closure k̄ is a Galois extension of
k. Take base changes X̄ = X×k k̄ and S̄ = S×k k̄. The Galois group Ḡ = Gal(k̄/k)
is infinite in general, but an algebraic cycle on X̄ can be defined on an algebraic
extension of k, so the action of Ḡ passes through a finite quotient group. Since
N1(X̄/S̄ ) and N1(X̄/S̄ ) are finite-dimensional, we can take the composition of
algebraic extension fields of the generators and take one finite quotient group
G acting on N1(X̄/S̄ ) and N1(X̄/S̄ ). Then N1(X/S ) = N1(X̄/S̄ )G.

Although G might not act on X̄, we can replace “G-invariant” and “G-
equivariant” by “defined over k” in Section 3.9.1 to get the same generaliza-
tions of results over algebraically closed fields.

3.10 Remaining problems

Although there has been great progress in the minimal model theory, there
are still two big open problems. One is the abundance conjecture, including
the nonvanishing conjecture, and the other is the problem of generalization to
positive characteristics.

The existence of minimal models in the general case is also a major open
problem, but there are two approaches to it. One is to prove the termination
of flips. The other is to show the nonvanishing conjecture, which is a part of
the abundance conjecture, and to apply the framework of inductive arguments
discussed in this chapter (Remark 3.4.2).
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3.10.1 The abundance conjecture

The abundance conjecture has been miraculously solved in dimension 3, but
the method cannot be generalized to higher dimensions, so it is necessary to
develop a completely new type of inductive argument on dimensions.

A minimal model discussed in this book has the numerical property that the
canonical divisor KX +B is nef. So we can call it a numerically minimal model.
In contrast, a birational model with a stronger condition that the canonical
divisor KX + B is semi-ample, is called a geometric minimal model. This is the
same with a good minimal model in [76].

Let us give the accurate definition. A projective morphism f : (X, B) → S
from a Q-factorial DLT pair is called a geometric minimal model if the follow-
ing conditions are satisfied: There is a decomposition f = h ◦ g into projective
morphisms g : X → Z and h : Z → S such that there is an h-ample R-divisor
H on Z with KX + B ∼R g∗H.

It is conjectured that a numerically minimal model is automatically a geo-
metric minimal model:

Conjecture 3.10.1 A projective morphism f : (X, B) → S from a DLT pair
is a numerically minimal model if and only if it is a geometric minimal model.

This conjecture can be proved to follow from the following abundance con-
jecture ([51]). The proof is a generalization of the basepoint-free theorem:

Conjecture 3.10.2 (Abundance conjecture) For a projective dominant mor-
phism f : (X, B) → S from a DLT pair with Q-divisor B, the following asser-
tions hold:

(1) (Nonvanishing conjecture) If ν(X/S ,KX+B) ≥ 0, then κ(X/S ,KX+B) ≥ 0.
(2) If ν(X/S ,KX + B) > 0, then κ(X/S ,KX + B) > 0.

The Kodaira dimension κ and its numerical version ν have been defined in
Chapter 2, here we only recall the definitions when KX + B is f -nef. These
invariants are defined by the values on the generic fiber. First, the relative Ko-
daira dimension κ(X/S ,KX + B) is the Kodaira dimension κ(Xη, (KX + B)|Xη ) of
the generic fiber Xη. The numerical Kodaira dimension ν(X/S ,KX + B) in this
case is defined as the following (which is the original definition):

ν(X/S ,KX + B) = max{r | ((KX + B)r · Hn−r)Xη > 0}.

Here H is an f -ample divisor and n = dim Xη. The value of ν(X/S ,KX + B)
is among 0, 1, . . . , dim Xη. Therefore, the assumption of the nonvanishing con-
jecture is always satisfied (when KX + B is f -nef).

The abundance conjecture is the last remaining big open problem in the
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minimal model theory. The conjecture is automatically true when ν = dim Xη.
Indeed, in this case the assertion that numerically minimal models are geomet-
ric minimal models follows from the basepoint-free theorem.

The conjecture can be also proved when ν = 0. When KX + B is f -nef, it
can be proved by using additivity of Kodaira dimensions ([58]). We will give
a proof without assuming the minimality in the next subsection.

The abundance conjecture was proved in dimension 3 ([95, 97, 96, 63, 78]).
The proof of the nonvanishing part ([95, 97]) made full use of special proper-
ties in dimension 3 and the generalization to higher dimensions seems difficult.

As a related topic, it has been proved that if the generic fiber has a geometric
minimal model, then the ambient space also has a geometric minimal model:

Theorem 3.10.3 (Hacon–Xu [40]) Let f : (X, B) → S be a projective mor-
phism from a DLT pair. Suppose that B is a Q-divisor. Take a nonempty open
subset S o of S , denote Xo = f −1(S o), Bo = B|Xo , and f o = f |Xo . Assume that
the following conditions hold:

(1) The morphism f o : (Xo, Bo)→ S o has a geometric minimal model.
(2) Any LC center of (X, B) intersects with Xo.

Then f : (X, B)→ S has a geometric minimal model.

3.10.2 The case of numerical Kodaira dimension 0

The existence of minimal models in general is still an open problem as the
termination of flips is not yet proved. However, if we consider the problem
only in codimension 1, we already know that the prime divisors contracted
by the MMP are irreducible components of the numerically fixed part of the
divisorial Zariski decomposition of the log canonical divisor. Indeed, during
the process of the MMP, we can contract all prime divisors that should be
contracted:

Theorem 3.10.4 Let f : (X, B) → S be a projective morphism from a Q-
factorial DLT pair to a quasi-projective algebraic variety. Suppose that KX+B
is relatively pseudo-effective. Run an MMP with scaling of a relatively ample
divisor H. Then after finitely many steps, all irreducible components of the
numerically fixed part of KX + B are contracted.

Proof Take (X, B) = (X0, B0) and denote by αi : (Xi, Bi) 99K (Xi+1, Bi+1)
(i = 0, 1, . . . ) the sequence of MMP with scaling. After removing finitely many
steps in the beginning, we may assume that αi are all isomorphic in codimen-
sion 1. Denote by Hi the strict transform of H on Xi, we have a sequence
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1 ≥ t0 ≥ t1 ≥ · · · determined by

ti = inf{t | KXi + Bi + tHi is relatively nef}.

Take t∞ = lim ti.
If t∞ > 0, take t∞ > t′ > 0, then this MMP is an MMP of f : (X, B+t′H)→ S

with scaling of (1 − t′)H. Since H is f -ample, this MMP terminate by the
theorem of BCHM.

Since KXi + Bi + tiHi is relatively nef, KX + B+ tiH is numerically movable.
So, if t∞ = 0, then the limit KX +B is also numerically movable. Therefore, the
numerically fixed part is contracted. □

As a corollary, we can show the existence of geometric minimal models
when ν = 0:

Corollary 3.10.5 (Druel, Gongyo [24, 32]) Let (X, B) be a Q-factorial pro-
jective DLT pair. Suppose that KX+B is pseudo-effective and ν(X,KX+B) = 0,
then there exists a minimal model α : (X, B) 99K (Y,C) such that KY +C ∼R 0.

Proof We construct α by Theorem 3.10.4. By Theorem 2.9.8, KY + C ≡ 0.
By Theorem 2.10.1, there are positive real numbers ri with

∑
ri = 1 and Q-

divisors Ci such that (Y,Ci) are DLT, C =
∑

riCi, and KY + Ci ≡ 0. By [74],
KY +Ci ∼Q 0. This concludes the assertion. □

Remark 3.10.6 We will explain later in Section 3.11.5 that when B is a
Q-divisor, there are also proofs dealing only with smooth algebraic varieties
which do not use the minimal model theory.

3.10.3 Generalization to positive characteristics

In dimension 2, the minimal model theory and the classification theory of
algebraic surfaces work for all characteristics. Mumford discovered several
“pathological” phenomena in algebraic surface theory in positive characteris-
tics ([107, 109, 105]), but from a higher point of view, algebraic surface theory
can be formulated uniformly independently of characteristics ([110]).

In contrast, the minimal model theory in dimensions 3 and higher deeply
relies on vanishing theorems of Kodaira type, so it is hard to be generalized
to positive characteristics. For this issue, there are only some partial results so
far.

The idea is to use Frobenius morphisms instead of vanishing theorems,
which is a method specific in positive characteristics. For example, although
far from perfect, there is an alternative to the basepoint-free theorem in [77]. In
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singularity theory, there are developments on F-singularity by using test ideals
instead of multiplier ideals.

In dimension 3, when the Kodaira dimension is nonnegative and the char-
acteristic is bigger than 5, the existence of minimal models is proved ([41]).
Also, the existence of minimal models for semistable families of surfaces (the
ambient space is of dimension 3) is proved ([66]).

In characteristic 0, results derived from analytic methods such as vanishing
theorems and extension theorems are crucial. Also, the general theory of defor-
mation invariance of plurigenera has only an analytic proof. In order to make
such analytic theory algebraic, it is necessary to go beyond the algebraic the-
ory in characteristic 0 and study algebraic geometry in positive characteristics.
That is why the theory for positive characteristics is very important.

3.11 Related topics

In this section, we discuss related topics without proof.

3.11.1 Boundedness results

For a given class of varieties, we discuss about what kind of boundedness we
should expect.

Algebraic varieties X can be roughly classified by the Kodaira dimensions
κ(X). For different Kodaira dimenisons, their geometric properties are com-
pletely different. There are three distinct classes, κ(X) = −∞, 0, dim X, and
their representatives are varieties with negative, 0, or positive canonical divi-
sors. Here we consider KLT pairs (X, B) and discuss the boundedness of certain
classes according to the positivity of KX + B.

A Fano variety is a variety whose anti-canonical divisor is ample. First, we
discuss the boundedness of Fano varieties. Fano varieties are expected to have
strong boundedness.

For the boundedness of Fano varieties, the ultimate problem is the following
BAB conjecture proposed by Alexeev and the Borisov brothers. For a positive
real number ϵ, a KLT pair (X, B) is ϵ-KLT or ϵ-LC if it satisfies the following
condition: Take a log resolution f : Y → (X, B) and write f ∗(KX +B) = KY +C
and C =

∑
ciCi, then for each i, ci < 1 − ϵ or ci ≤ 1 − ϵ. Here Ci are distinct

prime divisors.

Conjecture 3.11.1 (BAB conjecture) Fix a positive integer n and a positive
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real number ϵ. Then there is a scheme S of finite type and a flat projective
morphism f : X → S with the following property: For any ϵ-KLT pair (X, B)
consisting of a projective algebraic variety of dimension n and an R-divisor
such that −(KX + B) is ample, there is a closed point s ∈ S such that there is
an isomorphism X � f −1(s).

This conjecture is known when n = 2 ([3]). Also it is known for toric vari-
eties in arbitrary dimensions ([20]). The same boundedness result holds when
X is smooth and B = 0 ([87]). There are also some partial results when n = 3
([64, 90]). (Added in 2023: Birkar ([14, 15]) solved completely the BAB con-
jecture.)

In order to show the BAB conjecture, we need to show the following two
conjectures:

• (Boundedness of volumes) Fix a positive integer n and a positive real number
ϵ. Then there exists a real number M with the following property: For any
ϵ-KLT pair (X, B) consisting of a projective algebraic variety of dimension
n and an R-divisor such that −(KX + B) is ample, (−(KX + B))n ≤ M.

• (Boundedness of Cartier indices) Fix a positive integer n, a positive real
number, and a finite set of rational numbers I ⊂ (0, 1). Then there exists a
positive integer m with the following property: For any ϵ-KLT pair (X, B)
consisting of a projective algebraic variety of dimension n and a Q-divisor
such that the coefficients of B are in I and −(KX + B) is ample, m(KX + B) is
Cartier.

The boundedness of Cartier indices is a difficult conjecture, currently the
only known strategy is in [64], which depends on special phenomenon in di-
mension 3 and is hard to be generalized to higher dimensions.

A Calabi–Yau variety is a variety whose canonical divisor is 0. It is ex-
pected that certain boundedness can be also established for Calabi–Yau vari-
eties. However, simple boundedness as in the case of Fano varieties does not
hold.

On a K3 surface X which is a smooth Calabi–Yau variety of dimension 2,
an ample divisor H is said to be primitive if it cannot be written as H ∼ mH′

for some m ≥ 2 and some divisor H′. The pair (X,H) is called a polarized K3
surface and (H2) is called the degree. Polarized K3 surfaces of the same degree
form a deformation family of dimension 19. Since there are infinitely many
possibilities of degrees, algebraic K3 surfaces are not bounded as a family of
algebraic varieties. However, if we extend the set to all complex K3 surfaces,
then they are in one deformation family of dimension 20. Although there is
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no boundedness in the category of algebraic varieties, it becomes a bounded
family once we enlarge the category to complex manifolds. The same thing
happens to Abelian varieties.

A Calabi–Yau 3-fold is a simply connected smooth projective algebraic va-
riety of dimension 3 with K ∼ 0. Finiteness of deformation families of Calabi–
Yau 3-folds is a big problem. At least, there are mountains of (although finitely
many) known examples of Calabi–Yau 3-folds with distinct Euler numbers
([81]). But it is still expected that some kind of unified theory exists ([123]).

By theorems proved in this chapter, an algebraic variety of general type
is birationally equivalent to a variety with canonical singularities and ample
canonical divisor. Varieties of general type are general, as the name implies, so
it is difficult to control the whole family with great diversity.

The entire family of varieties of general type is too general, but we can prove
the boundedness once we fix the range of volumes defined as the following.
The volume vol(X) of a smooth projective variety X is defined by

vol(X) = lim sup
m→∞

n!
mn dim H0(X,mKX).

Here n = dim X. Being of general type is equivalent to vol(X) > 0. Take
the canonical model X′ of X, then for any integer m > 0, H0(X,mKX) �
H0(X′,mKX′ ). By the Riemann–Roch theorem, vol(X) = (Kn

X′ ). Note however
that the volume is a birational invariant which can be defined without passing
to the canonical model.

Theorem 3.11.2 ([35, 137, 42]) (1) For any fixed positive integer n, there
exists a positive integer mn satisfying the following property: If X is a
smooth projective variety of general type of dimension n, then for any in-
teger m ≥ mn, the linear system |mKX | defines a birational map onto its
image.

(2) Fix a positive integer n and a positive real number M. There exists a sheme
S = S M of finite type and a flat projective morphism f : X → S with the
following property: For any projective algebraic variety X of dimension n
with canonical singularities such that KX is ample and vol(X) ≤ M, there
is a closed point s ∈ S and an isomorphism X � f −1(s).

(3) For any fixed positive integer n, there exists a positive integer rn satisfying
the following property: If X is a smooth projective variety of general type
of dimension n, then vol(X) ≥ rn.

(4) For any fixed positive integer n, there exists a positive real number sn satis-
fying the following property: If X is a smooth projective variety of general
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type of dimension n, then the order of the birational automorphism group
of X is bounded from above by snvol(X).

3.11.2 Minimal log discrepancies

Section 3.11.1 discussed global boundedness, and we consider local bounded-
ness in this subsection.

We define the MLD mldZ(X, B) in order to quantitatively measure the sin-
gularity of a pair (X, B). Here X is a normal algebraic variety, B is an effective
R-divisor, Z is a closed subset of X, and KX + B is R-Cartier.

For a log resolution f : Y → (X, B), write f ∗(KX + B) = KY + C with
C =

∑
ciCi. Here Ci are disctinct prime divisors. Then define

mldZ(X, B) = inf
f ,Ci
{1 − ci | f (Ci) ⊂ Z}.

Here the infimum runs over all log resolutions and all prime divisors Ci. It is
not hard to see that the value of mldZ(X, B) is automatically −∞ if it is negative.
If mldZ(X, B) is nonnegative, then (X, B) is LC in a neighborhood of Z, and in
this case, its value can be computed by the minimum value of 1 − ci running
over all Ci with f (Ci) ⊂ Z for a fixed log resolution f on which f −1(Z) is a
divisor and C+ f −1(Z) has normal crossing support. For example, (X, B) is KLT,
LC, ϵ-KLT, ϵ-LC is equivalent to mldX(X, B) > 0, ≥ 0, > ϵ, ≥ ϵ, respectively.

For MLD, Shokurov proposed the following two conjectures and proved that
they imply the termination of flips ([131]):

Conjecture 3.11.3 (1) ACC conjecture: Fix a positive integer n and a set
I ⊂ [0, 1] satisfying the DCC. Then the set of all minimal log discrepancies
mldx(X, B), where dim X = n, the coefficients of B are in I, and x ∈ X is a
closed point, satisfies the ACC.

(2) LSC conjecture: The function mldx(X, B) for all closed points x ∈ X is
lower semicontinuous (=LSC).

These conjectures predict that the set of all algebraic varieties has some kind
of boundedness.

For an LC pair (X, B) and an effective R-Cartier divisor M on X, the LC
threshold lct(X, B; M) is defined by

lct(X, B; M) = max{t | (X, B + tM) is LC}.

LC thresholds are simpler than MLD, for which the ACC conjecture is proved:

Theorem 3.11.4 ([43]) Fix a positive integer n and DCC sets I ⊂ [0, 1],
J ⊂ [0,∞). Then the set of values of LC thresholds lct(X, B; M), where (X, B)
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is an LC pair, the coefficients of B are in I, and M is an effective R-Cartier
with coefficients in J, satisfies the ACC.

3.11.3 The Sarkisov program

The outcomes of the MMP are minimal models and Mori fiber spaces. In either
case, the outcome is not unique, and there are birationally equivalent minimal
models and Mori fiber spaces. In the former case, we have seen that minimal
models are connected to each other by a sequence of flops (Corollary 2.10.10).
In the latter case, they can be connected by fundamental transformations called
Sarkisov links ([39, 132]).

In this subsection, a Mori fiber space f : (X, B) → Y satisfies the following
conditions:

(1) (X, B) is KLT and X is Q-factorial.
(2) f is a projective surjective morphism over S with connected geometric

fibers.
(3) ρ(X/Y) = 1 and −(KX + B) is f -ample.

In this case, we may take ample R-divisors HX ,HY appropriately such that
KX + B + HX = f ∗HY . So (X, B + HX) is a KLT minimal model and f is
the canonical model. The idea of [39] is to express Sarkisov links using the
decomposition of the space of divisors with respect to canonical models.

A Sarkisov link between Mori fiber spaces fi : (Xi, Bi) → Yi (i = 1, 2) is as
the first diagram in Figure 3.1. Indeed, it belongs to one of the four types I, II,
III, and IV in Figure 3.1 and some of Ei, Fi,G coincide with Xi,Yi. Moreover,
the following conditions are satisfied:

(1) There exists an R-divisor BE1 on E1 such that (E1, BE1 ) is a Q-factorial
KLT pair and KE1 + BE1 ≡G 0.

(2) The horizontal dotted arrow α : E1 99K E2 is an isomorphism or a compo-
sition of (KE1 + BE1 )-flops.

(3) The nonhorizontal arrows gi, hi (i = 1, 2) are contraction morphisms asso-
ciated to extremal rays of KLT pairs which coincides with fi if the source
is Xi, and is a divisorial contraction if the target is Xi. Also h1 , h2.

By assumption, ρ(E1/G) = 2, so these diagrams are a kind of 2-ray game.
When f1 = f2, the Sarkisov link becomes a birational self-map of a Mori fiber
space. When f1 , f2, we automatically have h1 , h2.

Mori fiber spaces are connected by a sequence of Sarkisov links:



232 CHAPTER 3. THE FINITE GENERATION THEOREM

E1 E2

F1 F2

G

α

g1 g2

h1 h2

(I)

E1 X2

X1 Y2

Y1

f2

f1

(II)

E1 E2

X1 X2

Y1 = Y2

f1 f2

(III)

X1 E2

Y1 X2

Y2

f1

f2

(IV)

X1 X2

Y1 Y2

G

f1 f2

Figure 3.1 Sarkisov links.

Theorem 3.11.5 ([39]) Let fi : (Xi, Bi) → Yi (i = 1, 2) be Mori fiber spaces
obtained by MMP over S starting from a Q-factorial KLT pair (X0, B0) → S .
Then the induced birational map α can be decomposed into a sequence of
Sarkisov links.

3.11.4 Rationally connected varieties

A rational variety is a variety birational to a projective space and a unirational
variety is a variety which admits a dominant map from a projective space.
Those are interesting varieties but many things are unknown in dimensions 3
and higher. In contrast, rationally connected varieties, on which any two gen-
eral points are contained in a rational curve, are easier to handle ([88, 87, 89]).
These three concepts coincide in dimension no greater than 2, which is not the
case for dimensions 3 and higher. Rationality implies unirationality, and uni-
rationality implies rational connectedness. But there are unirational varieties
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which are not rational ([23, 50, 6]). Also it is expected that there are rationally
connected varieties which are not unirational.

It can be proved that fibers of contraction morphisms in the minimal model
theory are rationally connected:

Theorem 3.11.6 ([37]) Let f : (X, B) → S be a surjective morphism from
an LC pair and let s ∈ f (X) be a point. Suppose that −(KX + B) is f -ample.
Then any connected component of f −1(s) is rationally chain connected, that is,
for any two points x, y in a connected component of f −1(s), there are rational
curves C1, . . . ,Cr containing in f −1(s) such that x ∈ C1, y ∈ Cr, and Ci∩Ci+1 ,

∅ (i = 1, . . . , r − 1).

The concepts of rationality, unirationality, and rational connectedness are
birationally invariant properties in the category of algebraic varieties. Also, for
smooth projective algebraic varieties, rational connectedness and rational chain
connectedness are equivalent. However, for singular algebraic varieties, ratio-
nal chain connectedness cannot imply rational connectedness. Therefore, ratio-
nal chain connectedness is not a birationally invariant property. For example,
in a divisorial contraction of a 3-dimensional algebraic variety, the exceptional
divisor can be a cone over a curve of degree 3. In this case, the exceptional
divisor is rationally chain connected but not rationally connected.

3.11.5 The category of smooth algebraic varieties

Traditionally, algebraic geometry usually deals with smooth varieties. How-
ever, in the minimal model theory, the new point of view of considering va-
rieties with mild singularities led to numerous successes. Fundamental con-
jectures such as the subadditivity of Kodaira dimensions and the deformation
invariance of plurigenera had also been reduced to propositions in the minimal
model theory ([58, 114]).

Later, Siu proved the deformation invariance of plurigenera without assum-
ing the minimal model theory ([133, 134]). This was the beginning of the re-
cent development of the minimal model theory discussed in Chapter 3. It was
a revival of the point of view of focusing on smooth varieties. When dealing
with smooth varieties, one advantage is that one can apply analytic methods.
In this subsection, we recall results related to smooth algebraic varieties.

In the minimal model theory, it is expected that any algebraic variety has
a good birational model with mild singularities, which is a minimal model
or a Mori fiber space. Two birationally equivalent algebraic varieties have bi-
rationally equivalent minimal models or Mori fiber spaces, and the latter are
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connected by special birational transformations. Hence any birational map can
be decomposed into a decomposition of standard birational maps as divisorial
contractions and flips and their inverse maps, flops, and Sarkisov links.

In contrast, in the traditional point of view, smooth varieties are in the special
position. From this point of view, the following “weak factorization theorem”
is sufficient. According to this theorem, any birational map can be decomposed
into blowups and inverses of blowups ([2, 141, 143]):

Theorem 3.11.7 (Weak factorization theorem) Let α : X 99K Y be a bira-
tional map between two smooth projective varieties. Then there exists a se-
quence of birational maps αi : Xi−1 99K Xi (i = 1, . . . , r) with X0 = X, Xr = Y,
and α = αr ◦ · · · ◦ α1 such that for any i,

(1) Xi is smooth;
(2) αi or α−1

i is a blowup along a smooth subvariety.

We say that the strong factorization theorem holds if there is a decomposi-
tion such that for some integer 0 ≤ s ≤ t, the first s α−1

i (i = 1, . . . , s) and the
last t − s αi (i = s + 1, . . . , t) are morphisms. The strong factorization theorem
holds in dimension 2 and remains open in dimensions 3 and higher.

The following conjecture is closely related to the basepoint-free theorem. It
seems easy at the first glance, but it is a surprisingly deep and difficult conjec-
ture:

Conjecture 3.11.8 (Fujita’s conjecture) Let X be a smooth projective alge-
braic variety of dimension n and let H be an ample divisor on X. Then the
following assertions hold.

(1) (Freeness) For any integer m ≥ n + 1, |KX + mH| is basepoint free.
(2) (Very ampleness) For any integer m ≥ n + 2, KX + mH is very ample.

As the lengths of extremal rays of smooth varieties are bounded from above
by n + 1, KX + mH is nef in (1) and ample in (2) ([100]). This conjecture
predicts that it does not only have numerical properties but also geometric
properties. The freeness conjecture (1) is true when dim X ≤ 4 ([68]). Also, in
any dimension, for m ≥ n(n + 1)/2 + 1, |KX + mH| is basepoint free ([4]). The
very ampleness part is not yet well understood.

As Kodaira dimensions and numerical Kodaira dimensions are birational
invariants, the abundance conjecture can be also considered in the category of
smooth varieties. It suffices to consider a smooth projective variety X and an
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R-divisor B on X with normal crossing support whose coefficients are in the
interval [0, 1]. The conjecture says that κ(X,KX + B) = ν(X,KX + B).

The conjecture is trivial when ν(X,KX +B) = dim X. When ν(X,KX +B) = 0
and B is a Q-divisor, by Theorem 2.9.8, we can show that KX + B is Q-linearly
equivalent to an effective Q-divisor ([21, 135, 74, 22]).
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[105] Mumford, D. 1967. Pathologies. III. Amer. J. Math., 89, 94–104.
[106] Mumford, David. The canonical ring of an algebraic surface. Appendix to [144].
[107] Mumford, David. 1961a. Pathologies of modular algebraic surfaces. Amer. J.

Math., 83, 339–342.
[108] Mumford, David. 1961b. The topology of normal singularities of an algebraic

surface and a criterion for simplicity. Inst. Hautes Études Sci. Publ. Math., 5–22.
[109] Mumford, David. 1962. Further pathologies in algebraic geometry. Amer. J.

Math., 84, 642–648.
[110] Mumford, David. 1969. Enriques’ classification of surfaces in char p. I. Pages

325–339 of: Global Analysis (Papers in Honor of K. Kodaira). Univ. Tokyo
Press, Tokyo.

[111] Nadel, Alan Michael. 1990. Multiplier ideal sheaves and Kähler-Einstein metrics
of positive scalar curvature. Ann. of Math. (2), 132(3), 549–596.

[112] Nakano, Shigeo. 1973. Vanishing theorems for weakly 1-complete manifolds.
Pages 169–179 of: Number theory, algebraic geometry and commutative alge-
bra, in honor of Yasuo Akizuki.



243

[113] Nakano, Shigeo. 1974/75. Vanishing theorems for weakly 1-complete manifolds.
II. Publ. Res. Inst. Math. Sci., 10(1), 101–110.

[114] Nakayama, Noboru. 1986. Invariance of the plurigenera of algebraic varieties
under minimal model conjectures. Topology, 25(2), 237–251.

[115] Nakayama, Noboru. 1987. The lower semicontinuity of the plurigenera of com-
plex varieties. Pages 551–590 of: Algebraic geometry, Sendai, 1985. Adv. Stud.
Pure Math., vol. 10. North-Holland, Amsterdam.

[116] Nakayama, Noboru. 2004. Zariski-decomposition and abundance. MSJ Mem-
oirs, vol. 14. Mathematical Society of Japan, Tokyo.

[117] Norimatsu, Yoshiki. 1978. Kodaira vanishing theorem and Chern classes for
∂-manifolds. Proc. Japan Acad. Ser. A Math. Sci., 54(4), 107–108.

[118] Raynaud, M. 1978. Contre-exemple au “vanishing theorem” en caractéristique
p > 0. Pages 273–278 of: C. P. Ramanujam—a tribute. Tata Inst. Fund. Res.
Studies in Math., vol. 8. Springer, Berlin-New York.

[119] Reid, Miles. Projective morphisms according to Kawamata. Warwick preprint,
1983 (unpublished), www.maths.warwick.ac.uk/ miles/3folds/Ka.pdf.

[120] Reid, Miles. 1983a. Decomposition of toric morphisms. Pages 395–418 of:
Arithmetic and geometry, Vol. II. Progr. Math., vol. 36. Birkhäuser Boston,
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canonical model, 69, 85, 115, 126
geometric minimal model, 224
good minimal model, 224
log canonical model, 126
log minimal model, 126
minimal model, 66, 126, 197
Mori fiber space, 66
numerically minimal model, 224
terminal model, 126
weak minimal model, 197
weakly semistable model, 216
well-prepared model, 215

moduli space, 133
moduli space of morphisms, 134
Mori fiber space, 66, 117, 231
morphism, 8
movable

numerically movable, 141
movable part, 14, 188

numerically movable part, 141
multiplier ideal sheaf, 160, 162

asymptotic multiplier ideal sheaf, 166
logarithmic multiplier ideal sheaf, 165

Mumford’s numerical pullback, 72

Nadel vanishing theorem, 161
nef, 216

f -nef, 26
relatively nef, 26

negative part, 10
Neron–Severi group

relative Neron–Severi group, 23
Noether’s formula, 67
Noetherian induction, 91
non-KLT locus, 50
non-PLT locus, 163
nonsingular, 6
nonvanishing theorem, 89, 203
normal, 7
normal crossing divisor, 9
normalization, 7
numerical base locus, 145
numerical geometry, 20
numerical Iitaka–Kodaira dimension, 146
numerical Kodaira dimension, 224
numerically equivalent, 22, 23

relatively numerically equivalent, 22, 23
numerically fixed part, 141
numerically minimal model, 224
numerically movable, 141
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numerically movable cone, 142
numerically movable part, 141
numerically semipositive, 216

obstruction space, 134

permissible blowup, 35
permissible center, 35
perturbation, 46
Picard number, 23, 111
pinch point, 34
PL contraction, 182
PLT, 51
polarization, 26
polarized K3 surface, 228
polytope, 147

rational polytope, 147
positive part, 10
prime divisor, 7
primitive, 228
principal divisor, 8
projection formula, 23
projective, 25
pseudo-effective

relatively pseudo-effective, 25
pseudo-effective threshold, 210
pullback, 11, 15

Mumford’s numerical pullback, 72
purely log terminal, 51

quasi-projective, 25
quasi-smooth toroidal variety, 214
quotient singularity, 47

ramification formula, 19
rational curve, 22
rational double point, 69
rational map, 11
rational polytope, 147
rational singularity, 49, 51, 71
rational variety, 232
rationality theorem, 100
rationally chain connected, 233
rationally connected, 118
rationally connected variety, 232
reduced, 7, 9
reduction, 132
reflexive sheaf, 8
reflexive sheaf of rank one, 8
regular extension, 213
regular system of parameters, 7
Reid’s plurigenus formula, 85
relative t-cycle, 23
relative ample cone, 26

relative big cone, 25
relative curve, 21
relative global section, 16
relative Iitaka–Kodaira dimension, 17
relative log canonical sheaf, 215
relative log De Rham complex, 215
relative logarithmic differential form, 215
relative nef cone, 26
relative Neron–Severi group, 23
relative Picard number, 23
relative pseudo-effective cone, 25
relative section ring, 17
relative subvariety, 21
relative version, 2
relatively ample, 25, 26
relatively big, 17, 26
relatively free, 16
relatively linearly equivalent, 8
relatively nef, 26
relatively numerically effective, 26
relatively numerically equivalent, 22, 23
relatively pseudo-effective, 25
relatively semi-ample, 16
resolution, 34

G-equivariant log resolution, 75
log resolution, 34
log resolution in strong sense, 34
log resolution in weak sense, 34
minimal log resolution of singularities, 66
minimal resolution of singularities, 66
very log resolution, 48

Riemann–Roch theorem, 93
round down, 3, 10
round up, 10
ruled surface, 111

Sarkisov link, 231
saturation, 191
scale, 130
second Chern class, 67
section ring, 15

relative section ring, 17
self-intersection number, 22
semi-ample, 14

relatively semi-ample, 16
semipositivity theorem, 2, 216
Serre duality theorem, 141
Serre vanishing theorem, 37
simple normal crossing divisor, 9
simple singularity, 69
singular Hermitian metric, 162
singular locus, 7, 9, 17
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singularity
F-singularity, 227
ϵ-KLT, 227
ϵ-LC, 227
KLT, 53
ADE, 69
canonical, 69
divisorially log terminal, 51
DLT, 51
Du Val, 69
kawamata log terminal, 46
Klein, 69
KLT, 46
LC, 50
log canonical, 50
log terminal, 46
non-KLT locus, 50
pinch point, 34
PLT, 51
purely log terminal, 51
quotient, 47
rational, 49, 51, 71
rational double point, 69
simple, 69
terminal, 59
toric, 38
type 1

r (a1, . . . , an), 47
weak log terminal, 51
WLT, 51

small contraction, 117
smooth, 6
smooth toroidal variety, 214
special termination theorem, 192
special type, 84
stable, 28
Stein factorization, 94, 105
strict transform, 12
strong factorization theorem, 234
subadjunction formula, 20
support, 9
supporting function, 104
surface

algebraic surface, 64
complex algebraic surface, 27
conic surface, 111
del Pezzo surface, 111
polarized K3 surface, 228
ruled surface, 111

surjective in codimension 1, 13

terminal, 59
terminal model, 126

termination of flips, 125
termination of MMP with scaling, 156
test ideal, 227
theorem

Artin’s contraction theorem, 69
basepoint-free theorem, 2, 88, 95
Castelnuovo’s contraction theorem, 66
cone theorem, 106
contraction theorem, 105
effective basepoint-free theorem, 96
existence of flips, 125, 209
existence of minimal models, 196, 208
existence of Mori fiber spaces, 210
existence of PL flips, 182
extension theorem, 168, 174
finite generation of canonical rings, 2, 219
finiteness of minimal models, 202
Hironaka desingularization theorem, 33
Hodge index theorem, 65
Kawamata–Viehweg vanishing theorem, 45
Kleiman’s criterion, 28
Kodaira embedding theorem, 36
Kodaira vanishing theorem, 36
Nadel vanishing theorem, 161
nonvanishing theorem, 89, 203
rationality theorem, 100
Riemann–Roch theorem, 93
semipositivity theorem, 2, 216
Serre duality theorem, 141
Serre vanishing theorem, 37
special termination theorem, 192
strong factorization theorem, 234
weak factorization theorem, 234
weak semistable reduction theorem, 215
Zariski’s main theorem, 105

threshold, 89
LC threshold, 89, 205, 230
pseudo-effective threshold, 210

tiebreaking, 89
toric singularity, 38
toric variety, 54
toroidal morphism, 214
toroidal variety, 213

quasi-smooth toroidal variety, 214
smooth toroidal variety, 214

total transform, 12
transform

birational transform, 12
strict transform, 12
total transform, 12

tree, 71
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type 1
r (a1, . . . , an), 47

unirational variety, 232
uniruled variety, 118
universal family, 133

variety
Abelian variety, 28
algebraic variety, 6
Calabi–Yau variety, 228
Fano variety, 227
quasi-smooth toroidal variety, 214
rational variety, 232
rationally connected variety, 232
smooth toroidal variety, 214
toric variety, 54
toroidal variety, 213
unirational variety, 232
uniruled variety, 118

very general, 112
very log resolution, 48
volume, 229

wall crossing, 113, 131
weak effectivity, 208
weak factorization theorem, 234
weak log terminal, 51
weak minimal model, 197
weak semistable reduction theorem, 215
weakly 1-complete, 140
weakly semistable model, 216
weighted blowup, 84
Weil divisor, 8
well-prepared model, 215
without self-intersection, 214
WLT, 51

X-method, 93

Zariski decomposition, 80
divisorial Zariski decomposition, 10, 141

Zariski tangent space, 134
Zariski’s main theorem, 105
Zariski’s Riemann space, 183
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